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The behaviour of an isolated nearly spherical drop in an ambient linear flow is
examined analytically at small but finite Reynolds numbers, and thereby the first
effects of inertia on the bulk stress in a dilute emulsion of neutrally buoyant drops are
calculated. The Reynolds numbers, Re = γ̇ a2ρ/μ and R̂e = γ̇ a2ρ/μ̂, are the relevant
dimensionless measures of inertia in the continuous and disperse (drop) phases,
respectively. Here, a is the drop radius, γ̇ is the shear rate, ρ is the common density
and μ̂ and μ are, respectively, the viscosities of the drop and the suspending fluid.
The assumption of nearly spherical drops implies the dominance of surface tension,
and the analysis therefore corresponds to the limit of the capillary number (Ca) based
on the viscosity of the suspending fluid being small but finite; in other words, Ca � 1,
where Ca = μaγ̇ /T , T being the coefficient of interfacial tension. The bulk stress is
determined to O(φRe) via two approaches. The first one is the familiar direct approach
based on determining the force density associated with the disturbance velocity field on
the surface of the drop; the latter is determined to O(Re) from a regular perturbation
analysis. The second approach is based on a novel reciprocal theorem formulation and
allows the calculation, to O(Re), of the drop stresslet, and hence the emulsion bulk
stress, with knowledge of only the leading-order Stokes fields. The first approach is
used to determine the bulk stress for linear flows without vortex stretching, while the
reciprocal theorem approach allows one to generalize this result to any linear flow.
For the case of simple shear flow, the inertial contributions to the bulk stress lead to
normal stress differences (N1, N2) at O(φRe), where φ (�1) is the volume fraction of
the disperse phase. Inertia leads to negative and positive contributions, respectively,
to N1 and N2 at O(φRe). The signs of the inertial contributions to the normal stress
differences may be related to the O(ReCa) tilting of the drop towards the velocity
gradient direction. These signs are, however, opposite to that of the normal stress
differences in the creeping flow limit. The latter are O(φCa) and result from an
O(Ca2) deformation of the drop acting to tilt it towards the flow axis. As a result,
even a modest amount of inertia has a significant effect on the rheology of a dilute
emulsion. In particular, both normal stress differences reverse sign at critical Reynolds
numbers (Rec) of O(Ca) in the limit Ca � 1. This criterion for the reversal in the
signs of N1 and N2 is more conveniently expressed in terms of a critical Ohnesorge
number (Oh) based on the viscosity of the suspending fluid, where Oh = μ/(ρaT )1/2.
The critical Ohnesorge number for a sign reversal in N1 is found to be lower than that
for N2, and the precise numerical value is a function of λ. In uniaxial extensional flow,
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the Trouton viscosity remains unaltered at O(φRe), the first effects of inertia now
being restricted to O(φRe3/2). The analytical results for simple shear flow compare
favourably with the recent numerical simulations of Li & Sarkar (J. Rheol., vol. 49,
2005, p. 1377).

1. Introduction
Emulsions play a critical role in numerous industrial processes, and in many of these

applications, a knowledge of their rheological properties is an obvious prerequisite to
predicting their flow behaviour. In this regard, we derive the constitutive equation,
accurate to O(φRe), for a dilute emulsion of neutrally buoyant nearly spherical drops
subject to an ambient linear flow. Here, φ is the volume fraction of the drop phase,
and Re = γ̇ a2ρ/μ is the relevant dimensionless measure of inertia for flow around a
single drop of radius a, where γ̇ is an appropriate shear rate, ρ is the density and μ

and μ̂ are the continuous and disperse phase viscosities; both phases are assumed to
exhibit a Newtonian rheology. One may also define a Reynolds number, R̂e = γ̇ a2ρ/μ̂,

for the flow inside a drop with R̂e = Re/λ, λ= μ̂/μ being the viscosity ratio. The

analysis in this paper is restricted to the limit where both φ and Re (and R̂e) are
small but finite, and in addition, interfacial tension forces are assumed to be strong
enough to keep the drops nearly spherical. The latter assumption implies that the
capillary number, Ca =μaγ̇ /T , is small compared to unity, where T is the coefficient
of interfacial tension. Thus, the O(φRe) correction to the constitutive relation for a
dilute emulsion is related to the effect of weak inertia on the flow field around a single
spherical drop in a region of the order of its own size; the analysis here neglects
hydrodynamic interactions between two or more drops that might become important
at higher volume fractions.

There have been earlier attempts to characterize the role of inertia in the rheology of
a suspension of rigid particles: to O(φRe) for a general linear flow and to O(φRe3/2)
for simple shear flow. For both suspensions and emulsions, the theoretical calculation
of the inertial correction at O(φRe3/2) is a more difficult task than the one at
O(φRe), the difficulty being related to the non-uniformity of the leading-order Stokes
approximation. Unlike the O(φRe) correction, the dominant contributions to the bulk
stresses at O(φRe3/2) originate from regions relatively remote from the particle or
drop on the microscale. Lin, Peery & Schowalter (1970) were the first to investigate the
rheology of an inertial suspension in the infinitely dilute limit; they obtained results
accurate to O(φRe3/2) for simple shear flow via a traditionally matched asymptotic
expansions approach. Later, Stone, Brady & Lovalenti (2000) redid the calculation via
an alternate and more concise formulation in Fourier space based on the generalized
reciprocal theorem, and in the process, also extended the rheological results at O(φRe)
to an arbitrary ambient linear flow. In a forthcoming publication (Subramanian &
Koch 2010), it has been shown that these earlier calculations for the suspension bulk
stress are incomplete since they neglect the contributions of the Reynolds stresses at
O(φRe3/2). However, the predictions at O(φRe) are correct and have also since been
verified numerically; the numerical calculations extend the theoretical predictions
to finite Re (see Mikulencak & Morris 2004). Inertia leads to a non-Newtonian
suspension rheology at O(φRe), and for simple shear flow in particular, there arise
normal stress differences at this order although the shear viscosity remains unaltered.
However, this paper not only focuses on the qualitative change in rheology in the mere
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presence of microscale inertia (which is the case for both suspensions and emulsions),
but also changes in rheology that depend crucially on the strength of inertial effects
relative to viscous forces. The latter situation is specific to an emulsion. A dilute
emulsion exhibits a non-Newtonian rheology even in the inertialess limit. For finite
Re, both inertial and viscous forces compete with the restoring interfacial tension
forces that arise because of drop deformation.

Inertial effects become significant in emulsions with relatively low viscosity
suspending fluids at high shear rates, turbulent flows being an example. Consider
a turbulent flow of an aqueous emulsion (ρ ≈ 103 kg m−3, μ ≈ 10−3 Pa s−1) with a drop
size of about 50 μm. With a typical estimate for the dissipation rate per unit volume,
ε ≈ 10 cm2 s−3, one obtains the Kolmogorov length scale as lκ =(ε3/ν)1/4 ≈ 170 μm and
the corresponding shear rate, γ̇κ = (ε/ν)1/2 ≈ 25 s−1. The drops being much smaller
than the Kolmogorov scale, the ambient flow seen by a single drop is a nearly linear
flow with a fluctuating velocity gradient tensor. The relevant dimensionless measure
of the drop scale inertia is therefore the Reynolds number based on the drop size
and the Kolmogorov shear rate, being given by Re = a2ε1/2/ν3/2 ≈ 0.08 (the turbulent
flow, even on the scale of a micron-sized drop, is not exactly linear; a deviation of
the ambient flow from linearity, at O(Re), is accounted for in the present analysis).
The smallness of Re, that is, the fact that a2/ν � (ν/ε)1/2 also shows turbulence
to be a slowly evolving flow on the microscale. For the same parameter values,
one finds Ca = a(εμρ)1/2/T ≈ 10−4 with T ≈ 10 mNm−1, implying that the drops will
remain approximately spherical as is assumed in the following analysis. Thus, in this
parameter regime, one expects the microscale inertia induced alteration of emulsion
rheology, and the resulting flow behaviour, to be much more important than the
well-known non-Newtonian response related to drop deformation induced by purely
viscous forces (Re = 0). The present effort will help further the understanding of the
flow behaviour of emulsions in turbulent flow, or more generally, the behaviour
of disperse multiphase systems in flows that remain rheologically complex (non-
viscometric) down to the scale of the disperse phase constituents.

The principal result of this paper is an expression for the bulk stress in a dilute
emulsion, to O(φRe), in a general linear flow of the form u∞ = Γ · x = (E + Ω) · x,
where Γ is the transpose of the velocity gradient tensor, and E and Ω are the ambient
rate of strain tensor and the transpose of the vorticity tensor, respectively. One finds

Σij = −pt δij + μ

{
2Eij + 2φ

[
(5λ + 2)

2(λ + 1)
Eij +

1

10
∇2Eij

]
xd (t)

+ (φRe)

[
(27λ2 + 30λ + 10)

15(λ + 1)2
D∞Eij

Dt
− 4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEjk + ΩjkEik)

]
xd (t)

+O(φ2, φRe3/2, φCa)

}
, (1.1)

where pt is an arbitrary isotropic pressure, xd(t) denotes the position of the translating
drop relative to a laboratory reference frame, and D∞/Dt = ∂/∂t + u∞ · ∇ denotes the
material derivative associated with the ambient flow. As for the case of rigid particle
suspensions above, inertia evidently leads to a non-Newtonian emulsion rheology. The
arbitrariness referred to above is that of the total pressure in the emulsion which is, of
course, determined by incompressibility. However, a disperse phase pressure may still
be extracted from a constitutive relation. The normal stresses induced by the disperse
phase are thought to play a crucial role in the shear-induced migration associated with
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irreversible interparticle interactions (see Nott & Brady 1994; Morris & Brady 1998).
The present effort, however, focuses on the deviatoric part of the stress contributed
by isolated drops in a dilute emulsion and the resulting implications for rheology.

For simple shear (E = (1/2)(1x1y + 1y1x), Ω =(1/2)(1x1y − 1y1x) with x, y and z

corresponding to the flow, gradient and vorticity directions, respectively), one finds
that the viscosity is unchanged to O(φRe), but that the inertial contributions to
the normal stress differences at this order have signs opposite to the corresponding
normal stress differences resulting from drop deformation in the absence of inertia (e.g.
see Schowalter, Chaffey & Brenner 1968). The latter are O(φCa) and, therefore,
even a modest amount of inertia (Re ∼ Ca) qualitatively changes the rheology of
a dilute emulsion by reversing the sign of one or both normal stress differences.
Using (1.1), and including the O(φCa) contributions, the expressions for N1 and N2,
non-dimensionalized by μγ̇ , are given by

N1 = φCa
1

40

(
19λ + 16

λ+1

)2

− φRe
4(3λ2 + 3λ + 1)

9(λ + 1)2
+ O(φ2, φCa2, φRe3/2), (1.2)

N2 = − φCa
(551λ3 + 1623λ2 + 1926λ + 800)

280(λ + 1)3
+ φRe

2(3λ2 + 3λ + 1)

9(λ + 1)2

+O(φ2, φCa2, φRe3/2), (1.3)

where the O(φRe) contributions in both N1 and N2, in the limit λ → ∞, reduce to
those known for a rigid particle suspension at this order (Lin et al. 1970). The critical
condition for a reversal in sign of either N1 or N2 is related to the ratio (Re/Ca),
and is thus independent of the imposed shear rate. It is therefore best characterized
in terms of a dimensionless number that is a function of the system properties, but
not the flow. The Ohnesorge number (Oh), defined as Oh = (Ca/Re)1/2 = μ/(ρaT )1/2,
is such a parameter, and one obtains the following critical Ohnesorge numbers for
N1 and N2:

OhN1
c =

4
√

10

3

(3λ2 + 3λ + 1)1/2

(19λ + 16)
, (1.4)

OhN2
c =

4

3

[
35(λ + 1)(3λ2 + 3λ + 1)

(551λ3 + 1623λ2 + 1926λ + 800)

]1/2

. (1.5)

For steady extensional flow (Γ = E, Ω=0), it is readily seen from (1.1) that the inertial
correction is identically zero. Thus, rather remarkably, inertia leaves the extensional
viscosity unaltered, to O(φRe), irrespective of the viscosity ratio. The first effects of
inertia in this case enter at O(φRe3/2) and, as indicated earlier, a calculation of the
same requires a singular perturbation analysis. The present analysis was motivated
in part by the results of earlier simulations carried out by Li & Sarkar (2005),
which indicated the existence of such a reversal in the sign of the normal stress
differences. The authors simulated a dilute emulsion of unit viscosity ratio by placing
a spherical drop between parallel plates with periodic boundary conditions imposed
in the horizontal directions. The analytical predictions will be compared with the
numerical results in § 5.

The threshold conditions (1.4) and (1.5) are better understood in the context of a
specific system. Considering a typical low viscosity organic fluid with ρ ≈ 103 kg m−3,

μ ≈ 5 × 10−3 Pa s−1, and a coefficient of interfacial tension, T ≈ 10−2 Nm−1, again
typical for organic systems, one obtains the Ohnesorge number as a function of
the drop size: Oh ≈ 1.58 × 10−3/a1/2. Now, for an emulsion with similar disperse and
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continuous phase viscosities (λ≈ 1), one has OhN1
c ≈ 0.32 and OhN2

c ≈ 0.42. This system
must therefore exhibit a positive N1 and a negative N2 for drops smaller than 14 μm,
a positive N1 and a positive N2 for drop sizes between 14 μm and 24 μm, and finally, a
negative N1 and a positive N2 for drop sizes greater than 24 μm when inertial stresses
become dominant.

The paper is organized as follows. In § 2 we consider a density-matched spherical
Newtonian drop in an ambient linear flow of a Newtonian suspending fluid and
determine the velocity and pressure fields in either phase, accounting for the first
effects of inertia, via a regular perturbation approach. Later, in § 3, the corresponding
stress field in the suspending fluid, at O(Re), is used to determine the bulk stress, to
O(φRe), in a dilute emulsion subject to a linear flow without vortex stretching. The
calculations in this direct approach to the stress determination are tedious; the most
involved part of the entire calculation by far is the O(Re) correction to the stresslet.
Thus, in § 4, we again calculate the stresslet to O(Re) via an alternate approach based
on a novel reciprocal theorem formulation. This approach is shown to yield the same
result, thereby validating the result for the O(Re) disturbance velocity fields derived
via the straightforward yet cumbersome perturbation analysis of § 2. Furthermore,
the reciprocal theorem approach allows one to generalize the result for the bulk
stress, to O(φRe), to an arbitrary linear flow. The rheology of a dilute emulsion
in the inertialess limit, to O(φCa), is well known (e.g. see Frenkel & Acrivos 1970;
Schowalter et al. 1968). For the case of simple shear flow, an inertialess emulsion
exhibits a positive first normal stress difference (N1) and a negative second normal
stress difference (N2), both at O(φCa), on account of drop deformation. Combining
our calculations for the inertial contributions with the known expression for the
bulk stress in the creeping flow limit, we show in § 5 that inertia qualitatively alters
the emulsion rheology in simple shear when Re ∼ O(Ca). This is due to changes in
sign of both N1 and N2, and as explained above, the threshold conditions for the
reversals in sign are best formulated in terms of a critical Ohnesorge number for
each of N1 and N2. On the other hand, inertial effects leave the extensional rheology
of a dilute emulsion unaltered to O(φRe). It is argued thereafter that the results
here are expected to hold even for surfactant-laden interfaces, at least in the limit of
highly elastic interfaces. The theoretical predictions are finally compared with recent
simulation results. As is implicit in the above scalings, in all calculations we assume
the emulsion to still be dilute enough for hydrodynamic interactions between drops to
be unimportant. Pair interactions lead to an O(φ2) contribution to the bulk stress in
the limit of small φ, and the latter remains smaller than the contributions of O(φRe)
and O(φCa) included in this paper provided φ � Re, Ca. Finally, in § 6 we present a
brief summary of our results.

2. The velocity and pressure fields due to a neutrally buoyant drop in a simple
shear flow

In this section, we solve the velocity and pressure fields owing to a neutrally buoyant
Newtonian drop of viscosity μ̂ suspended in a simple shearing flow of a Newtonian
suspending fluid with viscosity μ in the limit of small but finite inertia. Using the
familiar scalings, viz. the drop radius a for position (r), the reciprocal of the ambient
shear rate γ̇ −1 for time, γ̇ a for the velocities, μ̂γ̇ for the stresses within the drop and
μγ̇ for stresses in the exterior fluid, one obtains the non-dimensionalized governing
equations in the exterior and interior of the drop at steady state. In a coordinate
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system with its origin at the centre of the drop, the equations

∇2u − ∇p = Re u · ∇u, (2.1)

∇ · u = 0 (2.2)

govern the fluid motion outside the drop, and

∇2û − ∇p̂ = R̂e û · ∇û, (2.3)

∇ · û = 0, (2.4)

govern the fluid motion within the drop. Here, (û, p̂) and (u, p), respectively,

denote the interior and exterior velocity and pressure fields, while R̂e = γ̇ a2ρ/μ̂ and
Re = γ̇ a2ρ/μ are corresponding dimensionless measures of the importance of inertia.
We impose the following boundary conditions at the surface of the undeformed
drop (r = 1):

u = û, (2.5)

u · n = 0, (2.6)

(σ · n) − (σ: nn)n = λ[(σ̂ · n) − (σ̂: nn)n], (2.7)

where σ = −p I + (∇u + ∇u†) and σ̂ = −p̂ I + (∇û + ∇û†) are, respectively, the
Newtonian stress tensors in the exterior and interior fluids, n is the unit normal
directed into the exterior fluid and λ= μ̂/μ is the viscosity ratio. The first and third
boundary conditions correspond to the continuity of velocity and tangential stresses
across the interface, the latter being the case for a surfactant-free drop. Equation
(2.6) is the kinematic boundary condition for a steady interface. Finally, we require
that the exterior velocity field u approach the ambient linear field, u∞ = Γ · r , at large
distances from the drop, and that the interior velocity field û remain finite at the
origin. Here, Γ denotes the transpose of the (dimensionless) velocity gradient tensor of
the ambient linear flow; for simple shear flow, for instance, Γ = 1x1y , x, y and z being
the flow, gradient and vorticity directions. In assuming a specified (spherical) shape
for the imposition of the interfacial boundary conditions, one loses the freedom of
satisfying, in addition, the normal stress balance at the interface. One may nevertheless
determine the correct leading-order velocity and pressure fields using (2.5)–(2.7) in the
limit of small Ca, where Ca = μaγ̇ /T , T being the coefficient of interfacial tension,
is the capillary number; the limit Ca � 1, therefore, corresponds to the situation in
which surface tension is dominant. The normal stress balance,

σ: nn − λ σ̂: nn =
2

Ca
∇ · n, (2.8)

may then be used to determine the O(Ca) deviation of the drop from sphericity on
account of the imposed external flow.

The above solution procedure may be carried forward to higher orders. For instance,
with Re =0, the Stokes velocity fields may be determined at leading order by
considering a spherical drop. Equation (2.8) may be used thereafter to determine
the O(Ca) drop deformation. The original boundary conditions (2.5)–(2.7) may now
be used, together with the O(Ca) deformed interface, in order to determine the O(Ca)
corrections to the leading-order Stokes fields. These corrections may in turn be used in
(2.8) to calculate the O(Ca2) deformation, and so on. The protocol remains unaltered
in presence of inertia. Thus, the calculation of the velocity and pressure fields to
O(Re) does not require one to know the O(ReCa) deformation of the drop, and one



Inertial effects on the rheology of a dilute emulsion 261

may continue to impose the interfacial boundary conditions at a spherical interface
even in the limit of small but finite Re.

It is well known that the limit of weak inertia is a singular one (e.g. see Proudman &
Pearson 1957; Lin et al. 1970). Thus, the leading-order exterior Stokes velocity field
obtained from solving the system (2.1)–(2.4) with Re = R̂e = 0 is not a uniformly
valid approximation in an unbounded domain at any finite Re however small. The
approximation breaks down for distances from the drop larger than an inertial
screening length that, for an ambient linear flow field, scales as O(aRe−1/2). The
correct approximation to the velocity field in this outer region must be obtained from
a solution of the linearized Navier–Stokes equations instead. However, it is shown
in the next section that the non-uniformity of the Stokes approximation, and the
resulting modified velocity field in the outer region only affects the bulk stress in a
dilute emulsion at O(φRe3/2). Thus, when determining the bulk stress to O(φRe),
one may solve for the O(Re) inertial correction to the leading-order Stokes exterior
velocity field using a regular perturbation expansion.

Accordingly, we expand both the interior and the exterior velocity fields as

u = u(0) + Re u(1) + O(Re3/2), (2.9)

û = û(0) + Re û(1) + O(Re3/2), (2.10)

with similar expansions for the corresponding pressure fields, recognizing that the
singular character of the perturbation only enters at O(Re3/2). The leading-order
terms in (2.9) and (2.10), of course, satisfy the Stokes equations, and have been well
documented for an ambient linear flow (see Leal 1992). We have

u(0) = Γ · r − λ

(λ + 1)r5
E · r −

(
(5λ + 2)

2(λ + 1)r5
− 5λ

2(λ + 1)r7

)
r(E: r r), (2.11)

p(0) = − (5λ + 2)

(λ + 1)r5
E: r r, (2.12)

û(0) = Ω · r +

(
− 3

2(λ + 1)
+

5r2

2(λ + 1)

)
E · r − 1

(λ + 1)
r(E: r r), (2.13)

p̂(0) =
21λ

2(λ + 1)
E: r r, (2.14)

where E = (1/2)(Γ + Γ †) and Ω = (1/2)(Γ − Γ †) are the rate of strain tensor and the
transpose of the vorticity tensor, respectively, of the ambient linear flow.

At O(Re), one obtains

∇2u(1) − ∇p(1) = u(0) · ∇u(0), (2.15)

∇ · u(1) = 0, (2.16)

and

∇2û(1) − ∇p̂(1) =
1

λ
û(0) · ∇û(0)

, (2.17)

∇ · û(1) = 0, (2.18)

where we have used R̂e = Re/λ, and u(0) and û(0) are given by (2.11) and (2.13),
respectively. One again has the boundary conditions (2.5)–(2.7) at r =1, but now
written in terms of u(1), û(1), σ (1) and σ̂

(1).
The system of equations comprising (2.15)–(2.18) has, in fact, been examined before

by Peery (1966). In attempting to verify his calculations, however, we found errors
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in the expressions for both the interior and exterior velocity fields. The former, in
particular, had serious errors. The rather tedious nature of the calculation involved
prompted us to directly determine the bulk stress via an alternate approach that
does not entail calculation of the O(Re) disturbance fields; this approach involving
a reciprocal theorem formulation is detailed in § 4. Herein, we only quote the final
results of the regular perturbation analysis for the O(Re) interior and exterior
velocity and pressure fields, obtained using Mathematica (a symbolic algebra package).
These will be used in the next section for the determination of the bulk stress. The
solution procedure at O(Re), in fact, closely resembles the calculation of the non-
Newtonian correction to the leading-order Stokes velocity field for a neutrally buoyant
particle in a second-order fluid undergoing a linear flow, since both the velocity and
pressure fields in both cases are quadratic functionals of the ambient velocity gradient
tensor. Details of the latter calculation may be found in Koch & Subramanian
(2006).

The O(Re) exterior velocity and pressure fields are given by

u(1) =
1

(λ + 1)

[(
− c1

4r11
+

c2

2r10
− 7c3

4r9
+

c4

3r8
− c5

12r5

)
(Γ : r r)2r +

(
c1

18r9
− 3c2

32r8

+
c6

r7
− c4

36r6
− c7

2r5
+

c5

18r3

)
(Γ : r r)(Γ · r)+

(
c1

18r9
− 3c2

32r8
+

c8

r7
− c4

36r6
+

c7

2r5

− c5

9r3

)
(Γ : r r)(Γ † · r) +

(
c1

36r9
− 3c2

32r8
+

c9

r7
− 5c4

36r6
− c10

r5
+

c5

36r3

)
(Γ · r) · (Γ · r)r

+

(
c1

18r9
− 3c2

16r8
+

c9 + c11

r7
− 5c4

18r6
+

c5

18r3

)
(Γ · r) · (Γ † · r)r+

(
c1

36r9
− 3c2

32r8

+
c11

r7
− 5c4

36r6
+

c10

r5
+

c5

36r3

)
(Γ † · r) · (Γ † · r)r +

(
− c1

126r7
+

c2

32r6
− c17

r5
+

c4

36r4

−λ + 1

30r3
+

c5

9r

)
Γ · (Γ · r)+

(
− c1

126r7
+

c2

32r6
− c18

r5
+

c4

36r4
+
λ + 1

30r3
− c5

18r

)
Γ † · (Γ †·r)

+
(
− c1

126r7
+

c2

32r6
− c12

r5
+

c4

36r4
− c7

6r3
+

c5

9r

)
Γ † · (Γ · r) +

(
− c1

126r7
+

c2

32r6
− c13

r5

+
c4

36r4
+

c7

6r3
− c5

18r

)
Γ · (Γ † · r)+

(
− c1

252r7
+

c2

48r6
− c12 + c13

2r5
+

c4

18r4
− c5

36r

)

(Γ :Γ † + Γ : Γ )r

]
, (2.19)

p(1) = − 1

2
(Γ · r) · (Γ † · r) +

1

(λ + 1)

[(
−5c14

2r12
+

c2

r10
− 7c3

4r9
+

3c4

4r8
− 5c7

r7
+

c5

2r5

)
(Γ : r r)2

+

(
− c14

2r10
+

c3

2r7
− c4

4r6
− c15

r5
− c5

6r3

)
(Γ · r) · (Γ · r) +

(
− c14

r10
+

c3

r7
− c4

2r6
+

c7
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+
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(Γ : Γ † + Γ : Γ )

]
. (2.20)
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The O(Re) interior velocity and pressure fields are given by

û(1) =
1

λ(λ + 1)2

[(
c′
1r

2 + c′
2

)
(Γ : r r)2r +
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4

8
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16
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16

+ c′
26r

4 + c′
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, (2.21)

p̂(1) =
1

λ(λ + 1)2

[(
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2−c′
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6
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− c′
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4 − c′
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2
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(Γ : Γ † + Γ : Γ )

]
. (2.22)

The constants ci and c′
i , appearing in the above expressions, have been tabulated

in Appendix A. We have verified that the expression (2.19) for the exterior velocity
field reduces to that for a rigid particle in the limit λ → ∞. The latter velocity
field has been correctly determined by Peery (1966) for a planar linear flow (also see
Subramanian & Koch 2006). In the same limit, all constants in the interior velocity
field except c′

29 and c′
30 vanish, and the interior velocity field reduces to limλ→∞ û(1) =

(1/6) [Γ · (Γ · r) − Γ † · (Γ † · r)] = (1/6)(ω · E) ∧ r , indicative of a modification of the
angular velocity of a particle, at O(Re), proportional to ω · E, ω being the ambient
vorticity (the actual O(Re) correction to the angular velocity of a torque-free neutrally
buoyant particle is not (Re/6)(ω · E), however; there arises an additional inertial
contribution, −(Re/30)(ω · E), from the angular acceleration in the ambient linear flow,
and the total angular velocity is therefore given by Ωp = (1/2) ω + (2Re/15) (ω · E), to
O(Re), in a general linear flow (Stone et al. 2000). The above findings are consistent
with the earlier results of Stone et al. (2000), who found the angular velocity of a
solid particle to remain unchanged to O(Re) in ambient linear flows without vortex
stretching (ω · E = 0); in simple shear, for instance, the first correction to the particle
angular velocity arises at O(Re3/2) (Lin et al. 1970).

As indicated above, a uniformly valid solution of the original system of equations,
(2.1)–(2.4), for small Re, requires a matched asymptotic expansions approach. We
therefore expect that the inertial correction, u(1), will not satisfy the far-field boundary
condition. This is, in fact, easily seen from (2.19); the leading-order terms in
u(1) remain O(1) in the limit r � 1. The non-uniform nature of the perturbation
expansion may also be seen from a simple scaling argument. Since the far-field
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Stokes velocity disturbance is that due to a stresslet, u(0) − Γ · r ∼ O(1/r2) for r � 1,
u(0) · ∇u(0) ∼ (Γ · r) · ∇[u(0) −Γ · r] ∼ O(1/r2); using (2.15), this in turn implies u(1) is
independent of r for large r as above, and thus fails to satisfy the far-field decay
condition. In the context of the present calculation, one only needs to recognize that
the expression for u(1) above still remains valid for r � Re−1/2, and this allows one to
calculate the bulk stress to O(φRe).

Furthermore, although it appears as if the expressions for u(1) and p(1) are valid
for an arbitrary Γ , this is not so. The calculation of the disturbance velocity
and pressure fields, and thence the stresslet, associated with a particle or a drop
immersed in an arbitrary imposed linear flow field becomes a rather difficult one at
finite Re. While the Stokes equations admit an arbitrary linear flow as a possible
solution, the associated pressure field being a constant, this is not the case for the
Navier–Stokes equations. The only linear flows that remain exact solutions of the
Navier–Stokes equations are extensional flow (Γ = E) and the one-parameter family of
planar linear flows (ω · E =0; the latter include both simple shear flow and solid-body
rotation (Γ = −Γ †) (Subramanian & Koch 2006). Except for the degenerate instance
of simple shear flow, there is a non-trivial quadratic pressure field at O(Re) in each of
these cases; this is represented by the first term in (2.20). The restriction on the nature
of the ambient linear flow may be readily understood from the vorticity equation

Re

(
Dω

Dt
− ω · E

)
= ∇2ω, (2.23)

where the vortex-stretching term is seen to be absent only in the aforementioned
exceptional cases, thereby allowing for a solution with a constant vorticity field.
Steady linear flows with vortex stretching do not satisfy the Navier–Stokes equations.
Thus, for small but finite Re, consideration of a general three-dimensional linear flow
entails an inconsistency at O(Re) arising from such a flow not being an exact solution
of the governing equations to the required order. The issue of deriving a disturbance
velocity field accurate to O(Re) becomes a rather delicate one, since one must also
show that the contributions to the disturbance velocity and pressure fields arising
from additional cubic or unsteady terms in the ambient flow (required for it to exactly
solve the Navier–Stokes equations to O(Re)) are, in an appropriate sense, smaller
than those arising from the linear component, and included in (2.19) and (2.20). This
aspect has been looked into in the context of an inertial suspension (Stone et al. 2000),
and we examine it in more detail for an emulsion in § 4, where we calculate the bulk
stress via a reciprocal theorem formulation. The latter approach does not require
one to solve for the O(Re) disturbance fields and is, therefore, more convenient for
the bulk stress determination in an arbitrary linear flow. For now, we only note that
the above inconsistency being absent for linear flows without vortex stretching, the
expressions (2.19) and (2.20) remain valid for this class of flows. In the next section,
we determine the exterior stress field from (2.19) and (2.20), and use it to calculate
the bulk stress, to O(φRe), in a dilute emulsion subjected to a three-dimensional
extensional flow or a planar linear flow.

3. Bulk stress in a dilute emulsion: linear flows without vortex stretching
In this section, we determine the bulk stress to O(φRe) in a dilute emulsion subject

to a linear flow without vortex stretching, that is, an ambient linear flow that itself
remains an exact solution of the Navier–Stokes equations for any Re. An important
example of such a flow, particularly from the rheological perspective, is simple shear
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flow, and the results of the analysis here will be used in § 5 to examine the behaviour
of the normal stress differences of a dilute emulsion in simple shear.

The expression for the bulk stress in a dispersion of force-free drops is given by

Σij = −ptδij + 2μEij + Σ
(d)
ij , (3.1)

where pt is an arbitrary isotropic pressure, the second term is the deviatoric stress in
the Newtonian suspending fluid, and Σ

(d)
ij is the excess stress because of the disperse

phase, defined in terms of a volume average (see Batchelor 1970):

Σ
(d)
ij =

1

V

N∑
α=1

∫
A+

α

[
1

2
(σikrj + σjkri)nk − μ(uinj + ujni)

]
dA

− 1

V

N∑
α=1

∫
Vα

1

2
(ρf ′

i rj + ρf ′
j ri)dV − 1

V

∫
V

ρ u′
iu

′
j dV. (3.2)

Here, Vα and Aα denote the volume and surface area of the αth drop and the
summations run over all the N drops in the microscopic volume V ; the surface A+

α

includes the thin layer, acted on by interfacial tension forces, around each drop.
Furthermore, f ′

i denotes the local acceleration relative to the average, and u′
i is the

local fluctuation velocity relative to the ambient linear flow; thus, u′
i = ui − Γij rj for

r > 1, and u′
i = ûi − Γij rj for r < 1, with r denoting radial distance from the centre of

any given drop. The first term in (3.2) is the familiar stresslet that leads to the Einstein
correction for a dilute suspension of rigid particles for Re = 0 (Kim & Karrila 1991);
for an emulsion, it is equal to the sum of the viscous and surface tension stresses. The
second and third terms are the acceleration stress and the Reynolds stress, respectively,
and are relevant only for finite Re (Batchelor 1970). The averaging procedure used to
define the bulk stress conceals velocity fluctuations (relative to the imposed mean flow)
at the microscale. Thus, as is the case in turbulence, the acceleration and Reynolds
stresses represent the processes of momentum transfer across a given surface on
account of these microscopic velocity fluctuations. Strictly speaking, Eij in (3.1) is
the average rate of strain in the emulsion, and must be distinguished from the rate
of strain in the suspending fluid alone (as defined, for instance, in § 2 via a far-field
boundary condition). The non-affine nature of the drop motion implies that the two
rates of strain need not be the same, and in particular, for the case of very viscous
drops (or rigid particles), the rate of strain in the suspending fluid must actually be
higher in order to conform to the imposed average value. Thus, the far-field rate
of strain encountered in § 2 is interpreted now as that corresponding to the ambient
linear flow of the emulsion.

For the case of a dilute emulsion of non-interacting drops, the summations in (3.2)
comprise N identical terms. Using the scalings introduced in the previous section and
the disperse phase volume fraction, φ = {N[(4/3)πa3]}/V , (3.2) reduces to

Σ
(d)
ij =

3φ

4π

∫
A+

d

[
1

2
(σikrj + σjkri)nk − (uinj + ujni)

]
dA

− 3φ

4π
Re

∫
Vd

1

2
(f ′

i rj + f ′
j ri) dV − 3φ

4π
Re

∫
V

u′
iu

′
j dV, (3.3)

where Vd and A+
d now denote the volume and surface area of an isolated neutrally

buoyant drop in an unbounded fluid domain V undergoing a planar linear flow.



266 R. V. Raja, G. Subramanian and D. L. Koch

The velocity fields and the corresponding stress fields, to be used in (3.3), have been
obtained in § 2.

The distinction in the particular surface of integration (external to or within
the interfacial layer) to be used in the calculation of the stresslet is an important
one when calculating the emulsion stress, since the normal component of the stress
has a discontinuity at the interface arising from surface tension. As emphasized by
Batchelor (see Batchelor 1970), the above expression for the bulk stress is also valid
for drops provided one interprets the surface area of integration in the stresslet term
as one that includes the interfacial layer. This then resolves the ambiguity with regard
to the choice of the surface force density to be used in the stresslet integral; the
stresses to be used in this integral correspond to those in the exterior fluid in the
limit r → 1. One may similarly show that the singular surface tension stress does
not contribute to either the acceleration or Reynolds stress integrals, although the
domain of integration in both cases includes the interfacial layer (see Batchelor 1970).
The integrations in (3.3) may be carried out assuming the surface of the drop to be
that of a sphere. The contribution to the viscosity, at leading order, that arises, for
instance, from the interfacial tension forces acting within the interface of a deformed
drop is automatically accounted for.

The separate contributions to the bulk stress due to viscous and interfacial tension
forces may be seen explicitly from an alternate expression for the bulk stress, which
may be derived from (3.3) as follows. Applying the divergence theorem to the terms
involving the force density in (3.3), one obtains

Σ
(d)
ij =

3φ

4π

[∫
Vd

1

2

(
∂σik

∂rk

rj +
∂σjk

∂rk

ri

)
dV +

∫
V +

d

σijdV

]
− 3φ

4π

∫
Ad

(uinj +ujni) dA

− 3φ

4π
Re

∫
Vd

1

2
(f ′

i rj + f ′
j ri)dV − 3φ

4π
Re

∫
V

u′
iu

′
j dV, (3.4)

where both the volume integral involving the stress divergence and the surface integral
involving the velocity field are continuous across the interface (the superscripts ± being
redundant). Now, we use ∇ · σ = Re f to eliminate the acceleration stress integral and
split the integral of σ over V +

d into one over V −
d and one involving the singular

interfacial stresses. The latter term may be expressed as an integral over the drop
interface, and one obtains

Σ
(d)
ij =

3φ

4π
(λ − 1)

∫
Ad

(uinj + ujni) dA +
3φ

4πCa

∫
Vd

(δij − ninj ) dA − 3φ

4π
Re

∫
V

u′
iu

′
j dV.

(3.5)

Note that the leading-order contribution in (3.5) arises from the O(1/Ca) surface
tension term, but this is isotropic, and therefore, of no relevance to the present
rheological calculation. It is, however, clear that an O(Ca) shape deformation in
the surface tension integral will indeed lead to an O(1) viscous contribution and,
therefore, one needs to account for the deviation of the drop from sphericity
when using (3.5) for the stress calculation. In fact, with Re =0, and for drops of
the same viscosity (λ= 1), the enhancement in the viscosity of a dilute emulsion
over that of the suspending fluid comes only from the existence of an interfacial
tension. This contribution is accounted for in Taylor’s original calculation of the
emulsion viscosity, μeff = μ[1+φ{(5λ + 2)/(2(λ + 1))}], where with λ= 1, one obtains
μeff = μ[1 + {(7/4)φ}] (see Schowalter et al. 1968).
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Returning to the original expression (3.3) for the stress, one may simplify the
inertial contributions by using an explicit expression for the acceleration f ′

i . For
the special case of simple shear flow, there being no ambient acceleration, one has
fi = f ′

i = (Dûi)/(Dt). Even for the case of a general linear flow, however, a neutrally
buoyant drop in the limit Ca � 1 translates, to O(Re), with the velocity of the ambient
flow at its centre, and the only additional acceleration in the drop phase is therefore
that due to the interior velocity field in a reference frame that translates with the
drop; in other words, f ′

i = (Dûi)/(Dt), at leading order, even for a general linear flow.
Using this, the acceleration stress in (3.3) becomes

1

2

∫
Vd

(
f ′

i rj + f ′
j ri

)
dV =

1

2

∫
Vd

(
Dûi

Dt
rj +

Dûj

Dt
ri

)
dV,

=
1

2

∫
Vd

(
ûl

∂ûi

∂rl

rj + ûl

∂ûj

∂rl

ri

)
dV,

= −
∫

Vd

ûi ûj dV,

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(3.6)

where we have used the divergence theorem, and the fact that û · n =0 at the interface.
Using this simplified expression for the acceleration stress in (3.3), one obtains

Σ
(d)
ij =

3φ

4π

[∫
A+

d

[
1

2
(σikrj + σjkri)nk − (uinj + ujni)

]
dA

−Re

(
−

∫
Vd

ûi ûj dV +

∫
Vd

u′
iu

′
j dV +

∫
V −Vd

u′
iu

′
j dV

)]
, (3.7)

where we have now divided the Reynolds stress into interior (Vd) and exterior
contributions (V − Vd). Since u′

i = ûi − Γij rj when r < 1, (3.7) may be further written
in the form

Σ
(d)
ij =

3φ

4π

[∫
A+

d

[
1

2
(σikrj + σjkri)nk − (uinj + ujni)

]
dA

+Re

(
4π

15
ΓikΓjk +

∫
Vd

Γikrku
′
j dV +

∫
Vd

Γjkrku
′
i dV −

∫
V −Vd

u′
iu

′
j dV

)]
. (3.8)

The most tedious part of the stress calculation using (3.8) is the determination of the
O(Re) correction to the stresslet. It is this contribution alone that necessitated the
calculation of the O(Re) corrections to the interior and exterior Stokes fields in § 2.
The contributions in (3.8) arising from the acceleration and Reynolds stress terms in
(3.3) are already O(Re) and, therefore, a calculation accurate to O(Re) need to use
only the leading-order Stokes fields. We also note that since the Stokes disturbance
velocity field is O(1/r2) for r � 1, the integrand of the last term in (3.8) is O(1/r4)
for r � 1, and the leading-order Reynolds stress integral over the unbounded fluid
domain,

∫
V −Vd

u′(0)
i u′(0)

j dV , is therefore convergent. Carrying this argument further, we
note that the Stokes approximation breaks down for r � O(Re−1/2). Assuming that
the modified outer velocity field decays at least as rapidly, the resulting modification
to the stress must scale as O(φRe).

∫ ∞
O(Re−1/2)

O(1/r4)dV ∼ O(φRe3/2) (this assumption

relies on the intuitive notion that convection is a more efficient mode of momentum
transfer at length scales larger than the inertial screening length and outside of a
wake of an asymptotically small extent. This is borne out for the simpler problem
of a particle translating in an otherwise quiescent fluid; Leal 1992). One may arrive
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at the same conclusion by instead considering the corrections to the leading-order
Reynolds stress contribution in the exterior fluid domain involving u(1). This is
given by Re2

∫
[u′(0)

i u′(1)
j + u′(1)

i u′(0)
j ]dV + Re3

∫
u′(1)

i u′(1)
j dV . Since u(1) remains O(1) for

r � 1 (see § 2), both integrals are evidently divergent. This divergence is cutoff at the
inertial screening length of O(Re−1/2), again indicating that the non-uniformity of the
leading-order Stokes approximation affects the stress calculation only at O(φRe3/2).

In accordance with our expansions for the velocity and pressure fields for small Re,
viz. (2.9) and (2.10), we now split the stress given by (3.8) into an O(1) and an O(Re)
contribution. Thus, using σ = σ (0) + Re σ (1), one obtains

Σ
(d)
ij = Σ

(d0)
ij + Re Σ

(d1)
ij + O(φRe3/2), (3.9)

where,
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+
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′
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∫
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)
. (3.11)

If the drop is assumed to be spherical, then the surface integrations in (3.10) and
(3.11) reduce to those over a unit sphere, and Σ

(d0)
ij , in particular, simplifies to

a Newtonian form; thus, Σ
(d0)
ij = [μ{(5λ + 2)/(λ + 1)}φ Eij ] + O(φCa) in the limit

Ca � 1. Unlike a dilute suspension, however, a dilute emulsion, even at Re = 0, and
in the absence of hydrodynamic interactions between drops, does not behave as a
Newtonian fluid. The Newtonian term with an effective viscosity given by the Taylor
contribution is therefore only the leading-order approximation in the limit of small
Ca. Accounting for drop deformation leads to a non-Newtonian rheology at higher
orders in Ca. This is hardly surprising since the presence of an interfacial tension
gives rise to an intrinsic relaxation time, τr ∼ O(aμ/T ), and one expects a deformed
microstructure (drop shape) leading to a non-Newtonian rheology when the flow time
scale γ̇ −1 is of the same order as τr . The ratio τr/γ̇

−1 is, of course, Ca, and the
capillary number is then a natural measure of the non-Newtonian character of a
dilute emulsion in the inertialess limit (Re = 0). The rheology of such an emulsion,
to O(φCa), has been calculated long ago (e.g. see Schowalter et al. 1968; Frenkel &
Acrivos 1970), and one finds the following expression for the bulk stress:

Σ
(d0)
ij =

(5λ + 2)

(λ + 1)
φEij +φCa

[
− 1

80

(
19λ + 16

λ+1

)2

ωs(εksiEkj + εksjEki)

+
3(19λ + 16)(25λ2 + 41λ + 4)

140(λ + 1)3

{
EikEkj − 1

3
δij (EklEkl)

}]
+ O(φ2, φCa2), (3.12)

for a steady linear flow.
The purpose of this paper to evaluate Σ

(d1)
ij in (3.9) and, hence, the O(φRe)

contributions to the bulk stress for an ambient linear flow. In accordance with (3.11),
the calculation may be divided into two parts. The easier part, the direct inertial
effect, involves the Reynolds stress integrals and is performed first followed by the
evaluation of the stresslet integral. Using the expressions for the Stokes velocity
fields u(0) and û(0), given by (2.11) and (2.13), and the standard identity for the
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angular integration of an even-ordered unit normal polyad over the unit sphere (Bird,
Armstrong & Hassager 1987), the following results, valid for a general linear flow,
are readily obtained:
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15
EjkΓik, (3.13)∫
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]
EikEkj , (3.15)

where we have omitted any isotropic part that emerges from the integrations. The
contribution of the inertial stresses in (3.11) may therefore be written as
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(3.16)

where we again note that the above expression is valid for a general linear flow with
vortex stretching.

We now evaluate the indirect inertial effect due to a modification of the surface
force density at O(Re) and the resulting correction to the stresslet integral, that is, the
first term in (3.11) which represents the combined effect of interfacial and the viscous
stresses associated with the O(Re) velocity field. The expression for the O(Re) surface
force density is quite lengthy and has, therefore, been relegated to Appendix B. As
discussed in § 2, the use of (2.19) and (2.20) restricts the validity of this calculation to
ambient linear flows where vortex stretching is absent. Carrying out the integrations
over the unit sphere, one finally obtains the following expression for the stresslet
integral:

∫
A+

d

[
1

2

(
σ

(1)
ik rj + σ

(1)
jk ri

)
nk −

(
u

(1)
i nj + u

(1)
j ni

)]
dA =

2π

15
(ΓikΓkj + ΓjkΓki)

− 16π(3λ2 + 3λ + 1)

27(λ + 1)2
(ΩikEjk + ΩjkEik) +

4π(43λ2 + 36λ + 8)

105(λ + 1)2
EikEjk, (3.17)

where the first term arises from the O(Re) pressure gradient in the ambient flow (the
first term in (2.20)) and is independent of λ; it vanishes for the case of simple shear
flow. We have again omitted all isotropic contributions keeping in mind that it is the
deviatoric stress that is of interest.

Using (3.12), (3.16) and (3.17), one arrives at the following expression for the excess
stress due to the disperse phase in a dilute emulsion subject to a linear flow without
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vortex stretching:

Σ
(d)
ij =

(5λ + 2)

(λ + 1)
φEij + (φCa)

[
− 1

80

(
19λ + 16

λ + 1

)2

ωs(εksiEkj + εksjEki)

+
3(19λ + 16)(25λ2 + 41λ + 4)

140(λ + 1)3
{EikEkj − 1

3
δij (EklEkl)}

]

+ (φRe)

[
1

5

[
ΓikΓjk − (EjkΓik +EikΓjk)

]
+

1

10
(ΓikΓkj + ΓjkΓki)−

4(3λ2 + 3λ + 1)

9(λ + 1)2

× (ΩikEjk + ΩjkEik)

]
+ O(φ2, φRe3/2, φCa2). (3.18)

The term proportional to E · E in the stresslet (3.17) cancels the last term in the
Reynolds stress contribution (3.16), and as a result, the dependence of the bulk
stress on λ, at O(φRe), is entirely contained in terms proportional to Ω · E or E · Ω .
Furthermore, the terms independent of λ that remain in (3.18) also cancel, and one
obtains the following much simpler form for Σ

(d)
ij :

Σ
(d)
ij =

(5λ + 2)

(λ + 1)
φEij +(φCa)

[
1

80

(
19λ + 16

λ + 1

)2

(ΩikEjk + ΩjkEik)

+
3(19λ + 16)(25λ2 + 41λ + 4)

140(λ + 1)3
EikEjk − (19λ + 16)(25λ2 + 41λ + 4)

140(λ + 1)3
(EklEkl)δij

]

− (φRe)
4(3λ2 + 3λ + 1)

9(λ + 1)2
(ΩikEjk + ΩjkEik) + O(φ2, φRe3/2, φCa2), (3.19)

for an ambient linear flow with ω · E = 0. It is worth noting that the tensorial form
of the inertial stress in (3.19) is independent of λ, the dependence on the latter only
appearing in the multiplicative pre-factor. In § 5, we will use (3.19) specifically for
the case of simple shear flow in order to examine the behaviour of the normal stress
differences as a function of Re and Ca. The invariance of the tensorial form implies
that the ratio of the O(φRe) contributions to the two normal stress differences is
independent of λ. Taking the limit λ → ∞, and omitting the O(φCa) terms, one
obtains the following expression for the excess stress, to O(φRe), in a suspension of
rigid particles:

Σ
(d)
ij = 5φEij −(φRe)

4

3
(ΩikEjk + ΩjkEik) + O(φ2, φRe3/2), (3.20)

a result identical to that obtained by Lin et al. (1970) and Stone et al. (2000). In
(3.20), the first term, of course, gives rise to the Einstein viscosity correction in the
Stokesian limit, while the second term is indicative of a non-Newtonian rheology in
the presence of inertia. The non-Newtonian rheology for an inertial suspension, at
O(φRe), arises solely due to the anisotropy of the disturbance velocity field at Re =0.

4. Bulk stress in a dilute emulsion: a general linear flow
In this section, we derive an expression for the bulk stress in a dilute emulsion

subject to a general linear flow and thereby extend the results of § 3 to the case
of (nearly) linear flows with vortex stretching. For these flows, it is seen from the
vorticity equation (see (2.23) in § 2) that one needs, in addition to the linear part, a
term of O(Re) with a cubic dependence on r , or a time dependence at the same
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order, in order to balance the vortex stretching. Now, the inertial contributions to
the bulk stress, at O(φRe), arise from the fluid motion in a region around the drop
of the order of its own size. This may be seen, for instance, from the convergence
of the acceleration and Reynolds stress integrals evaluated in § 3 using the leading-
order Stokes velocity fields. The corrections to these inertial stresses arising from
O(Re) unsteady/nonlinear terms in the ambient flow will therefore only be O(Re2),
and may be neglected in the present calculation. This is, of course, because the
unsteady or nonlinear terms in the ambient flow become important only at large
distances from the drop of the order of an inertial screening length, and the linear
term remains dominant at smaller length scales. Thus, from (3.8), one may write the
following expression for the excess stress due to the drop phase in an arbitrary linear
flow:

Σ
(d)
ij =

3φ

4π

∫
A+

d

[
1

2

(
σikrj + σjkri

)
nk −

(
uinj + ujni

)]
dA

+ φRe

[
1

5
ΓikΓjk − 1

5
(EjkΓik + EikΓjk)−

(43λ2 + 36λ + 8)

35(λ + 1)2
EikEkj

]
. (4.1)

As seen in § 3, the most difficult part of the stress calculation is the determination
of the O(Re) correction to the stresslet integral in (4.1). Below, this is, therefore,
done using an alternate approach based on the reciprocal theorem, so one only
needs to know the velocity and pressure fields for appropriately chosen Stokes flow
problems.

Before delving into the details of the stresslet calculation for a drop, it helps
to first summarize the main difference between this analysis and a similar one
for a rigid particle. The calculation of the stresslet, and hence the bulk stress, in
dilute suspensions of rigid particles has been done before via a reciprocal theorem
approach. As already mentioned, Stone et al. (2009) have adopted this approach for
the case of an inertial suspension, while the same approach has, in fact, been used
earlier in determining the stress in an inertialess suspension of charged spherical
particles (Sherwood 1980). The test problem in the reciprocal theorem formulation
for the above cases involves the (instantaneous) velocity and pressure fields due to
a spherical particle deforming with a specified velocity at its boundary; the latter
corresponds to that of an ambient extensional flow. Since the reciprocal theorem
formulation relates to a pair of velocity and stress fields via surface and volume
integrals, its success depends on the knowledge of the boundary conditions in both
problems involved. This allows either the calculation of a particular surface integral
or its reduction to the unknown rheological quantity desired—the stresslet in our
case; see (4.2). This reduction is, however, not immediate when calculating the bulk
stress in an inertial suspension. In the absence of inertia, a rigid spherical particle
in a linear flow spins with exactly half the local ambient vorticity. At finite Re, the
rate of spin in a general linear flow differs from (1/2) ω, a difference related to vortex
stretching in the ambient flow. For small Re, this deviation is O(Re), and applying
the boundary condition requires knowledge of this angular velocity correction. Its
determination requires, in principle, a knowledge of either the O(Re) disturbance
velocity and pressure fields or a separate reciprocal theorem identity for calculation
of the angular velocity correction. However, a solid-body rotation, at any order in
Re, corresponds to an antisymmetric velocity field, and therefore does not enter the
calculation for the stresslet, the symmetric first moment of the surface force density.
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Thus, knowing the surface velocity boundary condition within a solid-body rotation
is sufficient, and the aforementioned test problem with the reciprocal theorem identity
allows the calculation of the O(Re) correction to the rigid particle stresslet in the
same manner as the corresponding identity in the inertialess limit.

The above simplification, however, does not follow for the case of a viscous drop
simply because the velocity on the surface of the drop is more complicated than a
solid-body rotation. Thus, a reciprocal theorem formulation analogous to the one
above, although a necessary first step in the stresslet calculation, still has a surface
integral involving an unknown interfacial velocity. Note that the interfacial velocity
at Re = 0 is, of course, known from the solution of the corresponding Stokes problem.
However, one needs to know the interfacial velocity to O(Re) in order to determine the
inertial correction to the stresslet. In the following analysis, this unknown velocity field
is determined via a second novel reciprocal theorem formulation. The test problem
in this formulation involves a spherical drop, rather than a deforming particle, and
wherein the flow in either phase is driven by a specified discontinuity in the tangential
stress at the interface. We write down the reciprocal theorem identities both within and
outside the drop, and a combination of the two, together with the stress discontinuity
in the test problem, allows the determination of the integral, involving the unknown
interfacial velocity, in the original reciprocal theorem formulation.

We now begin with the statement of the reciprocal theorem at finite Re (see Kim &
Karrila 1991; Subramanian & Koch 2005):∫

Ad

n · σ ′ · ũ dS + Re

∫
Vf

f ′ · ũ dV =

∫
Ad

n · σ̃ · u′dS. (4.2)

Here, (u′, σ ′, f ′) denote the disturbance velocity, stress and inertial forcing fields
for the problem of interest, in our case, a neutrally buoyant drop suspended in an
ambient linear flow (u∞ = Γ · r) at small but finite Re; while (ũ, σ̃ ) correspond to an
appropriate Stokes flow problem (the ‘test’ problem referred to above). Furthermore,
Ad denotes the surface of the (spherical) drop and Vf denotes the exterior fluid
domain. The above identity has been written anticipating that the corresponding
surface integrals at infinity vanish and the volume integral in (4.2) remains absolutely
convergent. This is indeed the case since all relevant disturbance velocity fields decay
as O(1/r2) for large r and the corresponding stress fields as O(1/r3). Because the drop
is neutrally buoyant, it translates with the velocity of the ambient linear flow at its
centre to leading order. Thus, in a reference frame that translates with the neutrally
buoyant drop, the inertial forcing associated with the perturbation u′ is given by
f ′ = (∂u′/∂t) + u′ · ∇u′ + Γ · u′ + (Γ · r) · ∇u′, where we have accordingly neglected an
inertial term of the form Ud · ∇u′ corresponding to convection by a slip velocity Ud .
Even for a neutrally buoyant drop, however, there may arise a drift due to either an
interaction with an adjacent boundary or in the case where u∞ is a nonlinear function
of r (Leal 1980). Any such drift velocity must be O(Re) if it arises on account of
inertia (as for a rigid particle), or O(Ca) if it is related to drop deformation; the
corresponding convection terms are O(Re2) and O(ReCa), respectively, and may
be neglected. Thus, the above expression for f ′ is consistent when determining the
stresslet to O(Re).

As explained earlier, the stresslet involves the symmetric first moment of the
surface force density, σ · n, and the test problem must therefore correspond to a
particle, instantaneously spherical in shape, but deforming with a velocity field that
is given by −Ẽ · n, Ẽ being a symmetric traceless tensor. The disturbance velocity field
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in the test problem is of the form ũ = UE(r) : Ẽ with

UE(r) = − I r
r5

+
5

2

(
1

r2
− 1

)
r r r
r5

, (4.3)

and the corresponding surface force density given by σ̃ · n|r=1 = −3Ẽ · n. Using (4.3)
and the above expression for σ̃ · n in (4.2) and noting that the resulting identity only
holds for a symmetric traceless (but otherwise arbitrary) Ẽ, one obtains

1

2

∫
Ad

[
σ ′

iknkrj + σ ′
jknkri − 2

3
δij (σ

′
klrknl)

]
dS

=
Re

2

∫
Vf

[
f ′

l UE
lij + f ′

l UE
lji − 2

3
δij

(
f ′

l UE
lkk

)]
dV − 3

2

∫
Ad

(u′
inj + u′

jni) dS. (4.4)

Using σ ′ = σ −σ ∞ and applying the divergence theorem to convert the surface integral
involving the ambient stress to one over the volume Vd of the drop, (4.4) becomes

1

2

∫
Ad

[
σiknkrj + σjknkri − 2

3
δij (σklrknl)

]
dS

=
1

2

∫
Vd

[
∂σ ∞

ik

∂rk

rj +
∂σ ∞

jk

∂rk

ri −
2

3
δij

(
∂σ ∞

kl

∂rk

rl

)]
dV +

Re

2

∫
Vf

[
f ′

l UE
lij + f ′

l UE
lji

− 2

3
δij (f

′
l UE

lkk)

]
dV +

∫
Vd

[
σ ∞

ij − 1

3
δij σ ∞

kk

]
dV − 3

2

∫
Ad

(u′
inj + u′

jni) dS. (4.5)

For a rigid particle, the integral on the left-hand side in (4.5) is the stresslet SP . Using
σ ∞ − 1

3
I(σ ∞ : I) = 2E in the third volume integral on the right-hand side, and that

u′ = Ωp ∧ n − Γ · n at r = 1, one finally obtains the following simplified expression for
the stresslet:

SP
ij =

1

2

∫
Vd

[
∂σ ∞

ik

∂rk

rj +
∂σ ∞

jk

∂rk

ri − 2

3
δij

(
∂σ ∞

kl

∂rk

rl

)]
dV + 5

∫
Vd

Eij dV

+
Re

2

∫
Vf

[
f ′

l UE
lij + f ′

l UE
lji − 2

3
δij

(
f ′

l UE
lkk

)]
dV, (4.6)

where we have used
∫

Ad
(uinj + ujni)dS = 2

∫
Vd

eijdV , here e is the rate of strain
corresponding to the velocity field u. The above expression for the stresslet and the
preceding arguments with regard to the validity of the formulation for an arbitrary
ambient linear flow appear in Stone et al. (2009), who derive an expression for the
bulk stress to O(φRe) in a suspension of rigid particles subject to a general linear
flow. We, again, note that the essential simplification that allows the determination
of the stresslet for a rigid particle using (4.6) results from knowing u′ on the particle
surface in (4.5) to within a solid-body rotation field. This is not the case for a drop,
however. From (4.5), we see that for a drop, a calculation of the stresslet to O(Re)
requires a knowledge of the velocity u′ to the same order. Although u′ · n = −u∞ · n,
a kinematic requirement for a steady spherical interface, the O(Re) correction to
the tangential component of u′ is not known a priori and appears to necessitate
a calculation of the O(Re) velocity field as in § 2. However, as will be seen, the
tangential component, to O(Re), may be obtained using a second reciprocal theorem
formulation now applied both to the interior and exterior fluid domains and that
again requires only a knowledge of Stokes velocity and pressure fields. Before doing
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this, we discuss the reciprocal theorem formulation, (4.5), in a little more detail, and
finally write it in a form appropriate to an ambient (nearly) linear flow; see (4.9).

To begin with, we observe that the stresslet for a drop, SD , as defined in (4.1)
differs from that for a solid particle. Including this difference in (4.5), one obtains the
following relation for the stresslet SD:

SD
ij =

1

2

∫
Vd

[
∂σ ∞

ik

∂rk

rj +
∂σ ∞

jk

∂rk

ri − 2

3
δij

(
∂σ ∞
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∂rk
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)]
dV + 2

∫
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Eij dV

+
Re

2

∫
Vf

[
f ′

l UE
lij + f ′

l UE
lji − 2

3
δij

(
f ′

l UE
lkk

)]
dV − 5

2

∫
Ad

(u′
inj + u′

jni) dS. (4.7)

Restricting consideration to linear flows without vortex stretching for the moment,
we note that the velocity gradient tensor Γ is constant and the inertial acceleration
is therefore a linear function of r . Thus, ∇ · σ ∞ =ReΓ · (Γ · r), and (4.7) simplifies to

SD
ij =

8π

3
Eij +

2π

15
Re

[
ΓikΓkj + ΓjkΓki − 2

3
δij (ΓlkΓkl)

]

+
Re

2

∫
Vf

[
f ′

l UE
lij + f ′

l UE
lji − 2

3
δij

(
f ′

l UE
lkk

)]
dV − 5

2

∫
Ad

(u′
inj + u′

jni) dS. (4.8)

The second term in (4.8) arises from the first moment of the O(Re) acceleration
in the ambient flow. Since ω · E = 0, such an acceleration may be balanced by the
gradient of a quadratic pressure field. The latter was already encountered in § 2 in
the expression for the O(Re) correction to the exterior pressure field; see (2.20). Thus,
the second term in (4.8) corresponds to the contribution, (2π/15) (ΓikΓkj + ΓjkΓki) in
(3.17). For the case of simple shear flow, the pressure field is a constant and this term
is identically zero.

When considering an ambient flow of the form u∞ =Γ · r for an arbitrary Γ ,
as argued above, Γ is only a constant to O(1). The flow is no longer linear at
O(Re), and one expects an additional O(Re) quadratic inhomogeneity in the velocity
gradient tensor besides a possible time dependence in the general case. In this
case, it becomes convenient to shift the coordinate origin from the moving drop
to a suitable fixed point. The centre of mass of the drop in this new reference
frame is given by xd(t), and the ambient flow in the vicinity of the drop may be
written in the form u∞(x, t) = u∞(xd(t), t) + Γ (xd(t), t) · r with r = x − xd(t). Thus,
∇ · σ ∞ = Re(D∞u∞)/(Dt), where D∞/Dt is the material derivative associated with the
ambient flow. Following Stone et al. (2009), we Taylor-expand the velocity field about
xd(t) and perform the required surface integrations. The resulting stresslet in an
arbitrary (nearly) linear flow may then be written as

SD
ij =

8π

3

[
Eij +

1

10
∇2Eij

]
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+
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15
Re
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3
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)]
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+
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2

∫
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lij + f ′
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lji − 2

3
δij

(
f ′

l UE
lkk

)]
dV − 5

2

∫
Ad

(u′
inj + u′

jni) dS, (4.9)

where the term proportional to ∇2E accounts for the first effects of inhomogeneity in
the rate of strain; any higher-order variations are asymptotically smaller. Rewriting
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(4.9) in terms of the rate of strain and vorticity tensors, one obtains

SD
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3
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Eij +

1

10
∇2Eij

]
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+
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Re
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EikEjk − 1

3
δij (EklEkl)
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+
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∫
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3
δij
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lkk

)]
dV

−5

2

∫
Ad

(u′
inj + u′

jni) dS, (4.10)

which, of course, reduces to (4.8) for the case where E and Ω are independent of
spatial position. To O(Re), the volume integral involving f ′ in (4.9) may be evaluated
using the Stokes velocity field. This is, of course, equivalent to a solution via a regular
perturbation expansion. As argued in § 2, the non-uniformity in the leading-order
Stokes approximation and the related singular character of the inertial correction
only enters at O(φRe3/2). These observations apply to a rigid particle too. However,
unlike a rigid particle, the integral

∫
Ad
(u′n + u′n) dS still remains to be determined for

the case of a drop. We again emphasize that the normal component of u′ is, in fact,
known to all orders in Re from the condition of a steady (spherical) interface. Thus,
in what follows, we really aim to determine

∫
Ad
(u′

t n + u′
t n) dS, where u′

t = u′ · (I − nn)

denotes the tangential component of u′.
In order to determine

∫
Ad
(u′

t n + u′
t n) dS, we now consider the test problem of a

drop in an otherwise quiescent fluid where the flow is driven by a stress jump at the
interface. This stress jump may be specified by a symmetric traceless tensor B̂; the
corresponding jump in the stress vector is B̂ · n. The condition of zero trace arises
because it is only the jump in tangential stress that drives a flow. There will be a
corresponding jump in normal stress also needed in the calculation below. However,
any shape deformation that results from the anisotropic part of this normal stress
need not be accounted for, provided the relevant capillary number (defined in this
case as |B̂|a/T ) is small; we will assume this to be the case. Thus, as in § 2, the drop
is assumed to be spherical, and the test velocity and pressure fields are determined
with this assumption. The reciprocal theorem formulation is now applied to both the
interior and exterior domains, and the viscosity ratio in the test problem must be
equal to that in the actual problem, viz. λ. Denoting the exterior Stokes fields in the
test problem by (ũ+, σ̃+) and those in the interior by (ũ−, σ̃ −), one has the following
relations for finite Re:∫

Ad

n·σ̃+ · u′dS =

∫
Ad

n · σ ′ · ũ+ dS + Re

∫
Vf

f + · ũ+ vV, (4.11)∫
Ad

n̂·σ̃ − · u′dS =

∫
Ad

n̂ · σ ′ · ũ− dS + Re

∫
Vf

f − · ũ− dV. (4.12)

Here, n̂ = −n denotes the unit normal pointing into the drop and (u′, σ ′, f ±) still
corresponds to a neutrally buoyant drop in a general linear flow at finite Re as in
the earlier reciprocal theorem formulation, where f + and f −, respectively, denote the
inertial forcing fields in the exterior and the interior; thus,

f + =
∂u′

∂t
+ u′ · ∇u′ + Γ · u′ + (Γ · r) · ∇u′, (4.13)

f − =
1

λ

[
∂ û′

∂t
+ û′ · ∇û′ + Γ · û′ + (Γ · r) · ∇û′

]
. (4.14)
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Adding (4.11) and λ times (4.12), one obtains

∫
Ad

n · (σ̃+ − λσ̃ −) · u′dS = Re

[∫
Vf

f + · ũ+dV + λ

∫
Vd

f − · ũ−dV

]

+ (λ − 1)

∫
Ad

n · σ ∞ · ũ|r=1 dS, (4.15)

where we have used the continuity of the tangential components of σ at r = 1. The
test velocity at r = 1, ũ|r=1, is purely tangential and, therefore, the discontinuity in
the normal stresses, σ ′ : nn, does not enter the problem. Since the reciprocal theorem
formulation is in terms of the perturbation fields, the continuity in the total tangential
stress σ does not imply continuity of the perturbative tangential components (σ ′) that
appear in (4.11) and (4.12). The difference is precisely the discontinuity in the ambient
stress which appears on the right-hand side in (4.15). In the surface integral on
the left-hand side of (4.15), we write u′ as the sum of its normal and tangential
components; that is, u′ = u′

t − (u∞ · n)n. This has the effect of splitting the stress jump
vector in the test problem into its tangential and normal components. The former has
been specified; n · (σ̃+− λσ̃ −) · (I − nn) = B̂ · n. The latter must be determined as a
part of the solution. Thus, (4.15) takes the form

B̂ :

∫
Ad

nu′
t dS −

∫
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{n · (σ̃+ − λσ̃ −) · n}E : nn dS

=Re

[∫
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f + · ũ+dV + λ

∫
Vd

f − · ũ−dV

]
+ (λ − 1)

∫
Ad

n · σ ∞ · ũ|r=1 dS. (4.16)

Furthermore, the linearity of the Stokes flow problems allows one to write
ũ± = UB±(r) : B̂, ũ|r=1 = UB(n) : B̂, and the normal component of the stress jump,

n · �σ̃ · n, must evidently be of the form Σ̃ : B̂, where Σ̃ may, without loss of
generality, be taken as symmetric and traceless. Since the resulting equality holds for
an arbitrary B̂, we finally have∫

Ad

(u′
t inj + u′

t j ni) dS =

∫
Ad

Σ̃ij (E : nn) dS

+ 2(λ − 1)

∫
Ad

[
ElmUB

lij + ElmUB
lji − 2

3
δij

(
ElmUB

lkk

)]
nm|r=1 dS

Re

[∫
Vf

[
f +

l UB+
lij + f +

l UB+
lj i − 2

3
δij

(
f +

l UB+
lkk

)]
dV

+λ

∫
Vd

[
f −

l UB−
lij + f −

l UB−
lj i − 2

3
δij

(
f −

l UB−
lkk

)]
dV

]
, (4.17)

for the surface integral of interest. As shown below, the first two terms on the right-
hand side contribute to the Taylor viscosity, while the remaining two contribute to
the O(Re) corrections. To the order of approximation required, all quantities on the
right-hand side may be evaluated using Stokes flow velocity and pressure fields, and
the result may then be used in (4.9) to obtain the stresslet in an ambient linear flow.
Doing so, one obtains the following general expression for the stresslet in a dilute
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emulsion:
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. (4.18)

The solution to the test problem is straightforward, and we include a brief description
of the same in Appendix C. One finds

UB+
lij =
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− 3

10r5
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2r7
rirj rl
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, (4.19)
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, (4.20)

Σ̃ij = − (9λ + 6)

(λ + 1)
ninj , (4.21)

UB
lij =

1
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[ninjnl − δljni], (4.22)

now to be used in (4.18). First, evaluating the O(1) contributions in (4.18), one finds∫
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Using (4.23) and (4.24), (4.18) takes the form
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where the first term includes both the Newtonian response for a linear flow that
may be interpreted in terms of a Taylor viscosity and a Faxen-like correction for an
inhomogeneous rate of strain field. Using (4.3), (4.19) and (4.20), and the definitions
of f ± in (4.13) and (4.14), we now calculate the three volume integrals in (4.25).
The contributions to the stresslet arising from each of the terms in f ± are as
follows:∫
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û′
n

∂ûl
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Using the above results in (4.18) in the lab reference frame (so ∂E/∂t in the above
expressions becomes the convected derivative (D∞E)/(Dt)) one obtains the following
expression for the stresslet in a general linear flow:

SD
ij =

8π

3

[
(5λ + 2)

2(λ + 1)
Eij +

1

10
∇2Eij

]
xd (t)

+
4π

15
Re

[
D∞Eij

Dt
+

(
EikEjk − 1

3
δij (EklEkl)

)
+

(
ΩikΩjk − 1

3
δij (ΩklΩkl)

)]
xd (t)

+ Re

[
4π(27λ2 + 24λ + 7)

45(λ + 1)2
D∞Eij

Dt
− 16π(3λ2 + 3λ + 1)

27(λ + 1)2
(ΩikEjk + ΩjkEik)

+
4π(43λ2 + 36λ + 8)

105(λ + 1)2

(
EikEjk − 1

3
δij (EklEkl)

)]
xd (t)

. (4.35)

Furthermore, combining (4.35) with the expression (3.16) for the inertial stresses,
derived earlier in § 3 and valid for a general linear flow, one obtains the corresponding
expression for the excess disperse phase stress to O(φRe):
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ij = 2φ

[
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2(λ + 1)
Eij +

1
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∇2Eij

]
xd (t)

+ (φRe)
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]
+O(φ2, φRe3/2, φCa). (4.36)

For the case where E and Ω are constants, (4.36) reduces to the expression calculated
in § 3 for linear flows without vortex stretching, thereby validating the correctness of
the rather tedious perturbation analysis. Furthermore, for the case discussed in § 2,
where the weak (cubic) nonlinearity or time dependence in the ambient flow is induced
by the vortex stretching in the dominant linear part, both ∂E/∂t and ∇2E are O(Re);
the term u∞ · ∇E is O(Re2), and the convected derivative of the rate of strain in (4.36)
may be replaced by the Eulerian derivative. However, this is merely one instance of a
nonlinear ambient flow, and there exist other ambient flows in which the convection
of the inhomogeneous rate of strain field remains of the same order as in the other
terms. For instance, a turbulent flow field, on the scale of a sub-Kolmogorov drop,
may be written in the (dimensional) form u∞ = γ̇κΓ · x + O(γ̇κ/ lκ )( Q : xx), here Q is
a third-order tensor. The quadratic nonlinearity is again smaller on length scales of
the drop size, but by a geometric factor of O(a/lκ ) instead; thus, both u∞ · ∇E and
terms of the form E · E are now O(γ̇κ )

2. For a general nonlinear ambient flow, the
convected derivative has, therefore, to be retained in its full form. It is again worth
emphasizing that the tensorial form of the bulk stress at O(φRe) remains identical to
that for an inertial suspension; the numerical pre-factor is now a function of λ.
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The above expression for the stress is valid for an arbitrary flow that remains slow
and slowly varying on the microscale. Thus, it is of interest to compare (4.36) with the
retarded motion expansion known to model the rheology of polymer solutions and
melts in the limit of small Deborah number (see Bird et al. 1987; Larson 1988). In
fact, the rheology of an infinitely dilute inertialess emulsion is expected to conform to
the general structure of the retarded motion expansion to all orders with Ca playing
the role of the Deborah number. The singular nature of the inertial contribution at
O(Re3/2) ensures that the structure of a similar expansion for an inertial emulsion is
much more complicated starting at this order. However, the effect of inertia, even at
O(Re), is non-trivial. The relevant comparison in this case would be with the retarded
motion expansion truncated at quadratic order, that is, the constitutive relation for a
second-order fluid given by

Σ second−order = 2E − Ψ1

(
DE

Dt
+ Ω · E − E · Ω

)
+ (2Ψ1 + 4Ψ2)E · E, (4.37)

where Ψ1 and Ψ2 are the normal stress coefficients. Note that the numerical coefficient
multiplying the co-rotational terms (Ω · E − E · Ω) is the same as the convected
derivative, and this is fixed by the requirement of frame invariance (otherwise
known as the principle of material frame indifference); any rigid-body rotation
only serves to rotate the principal axes of the stress-inducing microstructure (Larson
1988). Notwithstanding the non-locality inherent in the Faxen-like term, one may
now compare (4.36) and (4.37). We note thereby that (4.36) is not frame invariant.
Thus, as pointed out earlier in the context of turbulence (Lumley 1970) and inertial
suspensions (see Ryskin 1980; Stone et al. 2000), the constitutive relation for a dilute
inertial emulsion is another example where microscale inertia leads to a violation
of the principle of material frame indifference. This also implies, as is also evident
physically, that the constitutive equation for one linear flow may not be deduced from
another by the mere use of arguments based on symmetry and invariance. Finally,
we note that the validity of (4.36) for rheologically complex flows would allow one
to examine flow scenarios that often arise in a microfluidic context, such as flow past
obstacles, flow through wavy-walled tubes or over topography (the purpose of which
might be to aid mixing) and flow through a contraction.

5. Emulsion rheology in simple shear and extensional flows
In this section, we focus on the rheology of an emulsion in two canonical flows—

simple shear flow and extensional flow (in both cases, ω · E = 0, and the results of
§ 3 may be used). For simple shear flow, E = (1/2)(1x1y + 1y1x) and ω = −1z. Using
(3.12), one obtains, to O(φCa), the following expressions for the two normal stress
differences:

N
(0)
1 = Σxx − Σyy = φCa

1

40

(
19λ + 16

λ + 1

)2

, (5.1)

N
(0)
2 = Σyy − Σzz = −φCa

(551λ3 + 1623λ2 + 1926λ + 800)

280(λ + 1)3
, (5.2)

for a dilute emulsion in the absence of inertia. Thus, N1 is positive and N2 negative.
The signs of the normal stress differences may be related to the deformation of the
drop in the imposed shear flow. At O(Ca), the originally spherical drop is stretched
into an ellipsoid with its major axis oriented along the extensional axis of the simple
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shear. The drop deformation at this order is proportional to the rate of strain tensor,
since the shape of a spherical drop remains unaffected by rotation. This then leads
to a Newtonian response at O(φ). At O(Ca2), however, the vorticity in the ambient
simple shear acts to rotate the ellipsoid towards the flow direction, and the resulting
tensile component of the surface tension forces in this direction gives rise to a positive
N1 at O(φCa). On the other hand, the additional compressive stress in the gradient
direction leads to a negative N2 at the same order.

Using (3.19), and the normal stress differences corresponding to each of the tensorial
terms therein, viz. NE · E

1 = 0, NE · E
2 = 1/4 and NΩ · E−E · Ω

1 = 1, NΩ · E−E · Ω
2 = −1/2, one may

now write down the following expressions for N1 and N2 in the presence of microscale
inertia:

N1 = N
(0)
1 − φRe

4(3λ2 + 3λ + 1)

9(λ + 1)2
+ O(φ2, φCa2, φRe3/2), (5.3)

N2 = N
(0)
2 + φRe

2(3λ2 + 3λ + 1)

9(λ + 1)2
+ O(φ2, φCa2, φRe3/2). (5.4)

The contributions at O(φCa) and (φRe) are evidently of opposite signs. It is seen from
(3.16) that the direct inertial contributions (i.e. the Reynolds and acceleration stresses)
only contribute to an N2 via the λ-dependent term proportional to E · E. However,
as already mentioned, this term is identically cancelled by a term of the same form
in the stresslet contribution; see (3.17). Therefore, the O(φRe) contributions to both
N1 (positive) and N2 (negative) arise entirely from the stresslet integral. Furthermore,
since the contributing term is proportional to Ω · E − E · Ω , the ratio of the O(φRe)
contributions to N1 and N2 is independent of λ, being equal to −2.

The underlying physics becomes clearer from examining the alternate expression,
(3.5), for the bulk stress, rather than (3.3) used for the above calculation. In (3.5), the
contribution to the normal stress differences from the Reynolds stresses arises because
of the anisotropy of the Stokes velocity field fluctuations. Since the disturbance
velocity field at Re = 0 is only a function of E, the Reynolds stress contribution must
be proportional to E · E. Thus, the reversed signs of the normal stress differences at
O(φRe) are related to the first two terms in (3.5), that is, the O(Re) modification of
the viscous and interfacial tension stresses acting on the drop surface; the latter arise
because of the deformation of the drop at O(ReCa) on account of inertial forces. Now,
for λ= 1, the viscous stress contribution is identically zero, and the reversal in the sign
of the normal stress differences for this viscosity ratio is therefore a direct result of the
dominance of the inertial O(ReCa) drop deformation over the O(Ca2) deformation
induced by viscous stresses. Indeed, it may be shown using the normal stress balance
at O(Re) that the drop deformation at O(ReCa) acts to rotate it towards the velocity
gradient direction. This is in contrast to the flow-aligning deformation at O(Ca2).
The opposing roles of inertial and viscous forces with regard to drop deformation
in simple shear, for a viscosity ratio of unity, have already been highlighted in the
numerical simulations of Renardy & Cristini (2001) and Li & Sarkar (2005); the latter
simulations are compared in some detail with the analytical predictions obtained here
at the end of this section. Determining the relative magnitudes of the O(Re) viscous
and interfacial tension contributions for other viscosity ratios would entail a separate
calculation, to O(Re), of the individual terms in the expression (3.5) for the stresslet.
Although this is not done here, it is worth mentioning the relative magnitudes of the
analogous contributions to the shear viscosity for Re = 0. Again, using (3.5), it is easily
shown that the viscous and interfacial tension contributions to the Taylor viscosity
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are (19λ + 16)/10(λ + 1) and {3(λ − 1)}/{5(λ + 1)}, respectively, and the ratio of the
two contributions, (19λ + 16)/6(λ − 1), remains of order unity for all viscosity ratios
and diverges for λ → 1. In fact, for drops of lower viscosity (λ< 1), the viscous
contribution changes sign, but the interfacial tension contribution (because of drop
deformation along the extensional axis) overwhelms this reduction and ensures that
a dilute emulsion, to O(φ), is always more viscous than the suspending fluid. Thus, it
does seem reasonable to conclude, even for small but finite Re, that it is the nature
of the O(ReCa) drop deformation and the resulting anisotropy of the surface tension
forces that is primarily responsible for the reversal in rheological characteristics; this
is expected to be so at least for a range of viscosity ratios around unity. Finally, we
also note that the effective shear viscosity of the emulsion remains unchanged to the
order (quadratic) considered in the analysis; thus, to O(φRe) or O(φCa), the shear
viscosity of a dilute emulsion is still given by the Taylor result (Taylor 1932).

From (5.3), one finds that N1 changes sign at a critical Reynolds number given by

ReN1
c =

9(19λ + 16)2

160(3λ2 + 3λ + 1)
Ca, (5.5)

where N1 is positive for Re < ReN1
c and negative for higher Re. Similarly, using (5.4),

the critical Reynolds number for N2 is found to be

ReN2
c =

9(551λ3 + 1623λ2 + 1926λ + 800)

560(λ + 1)(3λ2 + 3λ + 1)
Ca, (5.6)

the change in the sign in this case being from negative to positive with increasing
Re. It is worth noting that provided Ca � 1, the predictions (5.5) and (5.6) for the
critical Reynolds numbers are consistent with the assumption of weak inertia implicit
in the perturbation analysis of § 2. While the formulation of the threshold conditions
in terms of a critical Reynolds number is useful when comparing with simulation
results (see below), it is important to note that the threshold condition for a reversal
in the sign of either N1 or N2 is independent of the shear rate. Thus, from an
experimental point of view, (5.5) and (5.6) are more conveniently written in terms of
a critical Ohnesorge number (Ohc), a dimensionless parameter that is only a function
of the system properties, as a function of the viscosity ratio. The Ohnesorge number
being defined as Oh = (Ca/Re)1/2, one finds the following critical values corresponding
to (5.5) and (5.6):

OhN1
c =

4
√

10

3

(3λ2 + 3λ + 1)1/2

(19λ + 16)
, (5.7)

OhN2
c =

4

3

[
35(λ + 1)(3λ2 + 3λ + 1)

(551λ3 + 1623λ2 + 1926λ + 800)

]1/2

. (5.8)

The ratio of the two Ohnesorge numbers is given by

OhN2
c

OhN1
c

=

[
7(λ + 1)(19λ + 16)

2(29λ2 + 61λ + 50)

]1/2

. (5.9)

The respective critical Ohnesorge numbers and their ratio are plotted as a function of
λ in figures 1 and 2. The two individual critical values are increasing functions of λ,
and the ratio (OhN2

c )/(OhN1
c ) again increases monotonically from a value of about 1.06

for a bubble (λ= 0), asymptoting to a value of about 1.51 in the limit λ → ∞. In terms
of the critical Reynolds numbers, this would imply that ReN1

c > ReN2
c for all viscosity

ratios. Thus, the theory predicts that an emulsion will have a negative N1 and a positive
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Figure 1. OhN1
c (lower curve) and OhN2

c (upper curve) as a function of the viscosity ratio λ,
where OhN1

c and OhN2
c are the critical Reynolds numbers for a reversal in sign of N1 and N2,

respectively.
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Figure 2. The ratio OhN2
c /OhN1

c as a function of λ.

N2 for Oh < OhN1
c (λ), a positive N1 and a positive N2 for OhN1

c (λ) < Oh <OhN2
c (λ) and,

finally, a positive N1 and a negative N2 for Oh >OhN2
c (λ). The above predictions are,

of course, valid only when the corresponding Reynolds and capillary numbers are
still smaller than unity.

As in § 3, the limit λ → ∞ serves as a check on the above predictions. In this
limit, the contributions that do not explicitly involve the interfacial tension T (or Ca
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in dimensionless terms) must reduce to those for a solid particle. Thus, the Taylor
prediction for the O(φ) enhancement of the emulsion viscosity, {(5λ + 2)/2(λ + 1)}φ,
does reduce to the well-known Einstein correction in this limit; see (3.12) and (3.20).
This must also apply to the O(φRe) contributions to the normal stress differences in
(5.3) and (5.4). In the limit of very viscous drops, one finds

lim
λ→∞

N1 ≈ −4

3
φRe + O(φCa), (5.10)

lim
λ→∞

N2 ≈ 2

3
φRe + O(φCa). (5.11)

These are the expressions found originally by Lin et al. (1970) for a suspension of
rigid spherical particles in simple shear flow in the limit of small but finite Re. In
order to recover the result for a rigid particle suspension, one must therefore take
the limit λ, T → ∞ (Oh → 0) corresponding to a very viscous drop with an infinitely
stiff interface. The limit of a large drop viscosity alone is not necessarily equivalent to
the rigid particle limit when one looks at steady-state rheological properties because
the small outer viscosity, acting over a very long interval of time (which increases in
proportion to the drop viscosity μ̂), acts to eventually induce a deformation that is
independent of μ̂, provided the interfacial tension remains finite. In the limit λ, T → ∞,
however, only the O(φRe) contributions survive, and as seen from (5.10) and (5.11),
an inertial suspension in the dilute limit has a negative N1 and a positive N2. As
mentioned earlier, unlike a dilute emulsion, a dilute suspension of rigid particles, in
the absence of hydrodynamic interactions, exhibits a non-Newtonian rheology only
for Re �= 0.

An alternate interpretation of the aforementioned rigid particle limit allows us to
partially extend our findings to the case of surfactant-covered drops. The relevant
limit is Ma → ∞, Ca → 0 with E =MaCa ≈ O(1), where Ma = [((dT )/(dci)) ceq]/aμγ̇

is the Marangoni number and E, the surfactant elasticity parameter, is a purely
physicochemical quantity independent of the flow; here, ceq is the equilibrium
interfacial surfactant concentration, and dT /dci is a measure of the sensitivity of
interfacial tension to variations in the interfacial concentration ci at ci = ceq . The
above limit is typically realized for high molecular-weight surfactants for a sufficiently
high surface coverage; the time scale for adsorption/de-sorption processes is usually
much longer than the flow time scale for such surfactants, and the role of bulk
processes in surfactant transport is therefore negligible. The interface in the limit
Ma → ∞ is infinitely sensitive to variations in the interfacial surfactant concentration
and, therefore, supports a velocity field that is nearly solenoidal with a nearly uniform
surfactant concentration. The problem of determining the rheology at O(φRe) in the
limit Ca → 0, Ma → ∞ reduces again to the solution of the governing equations of
motion to O(Re) in the exterior fluid, but with an imposed surface-solenoidal velocity
boundary condition at the drop surface. Since, to O(Ca), the drop may be treated
as a sphere, the only interfacial velocity condition consistent with the symmetry of
the ambient simple shear, and the additional constraint of being solenoidal, is a
solid-body rotation field. Thus, the rheological problem in the limit reduces to that
of a suspension of rigid spherical particles, and (5.10) and (5.11) may therefore be
interpreted as the normal stress differences arising at O(φRe) in a dilute emulsion of
surfactant-laden drops in the limit Ca → 0, Ma → ∞. There are, again, contributions
to both N1 and N2 at O(φCa), and these, of course, differ from those encountered
at the beginning of this section. The normal stress differences given by (5.1) and
(5.2) arise from the O(Ca2) deformation of a surfactant-free drop with a large but
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finite interfacial tension. On the other hand, the O(φCa) contributions referred to
above are relevant to a surfactant-laden drop and arise because of the coupled effects
of an O(Ca2) perturbation in the drop shape and an O(Ma−1) variation in the
(interfacial) surfactant concentration; the elastic interface in this case can support a
finite shear stress. The rheology of a dilute emulsion in this latter regime has been
determined by Vlahovska, Loewenberg & Blawzdziewicz (2005) for a viscosity ratio
of unity via a perturbation analysis in the inertialess limit; they find the following
expressions for N1 and N2 to O(φCa):

lim
Ma→∞,λ=1

N
(0)
1 = φCa

5(4E + 1)

2E
, (5.12)

lim
Ma→∞,λ=1

N
(0)
2 = −φCa

5(13E + 7)

28E
. (5.13)

As before, the shear viscosity of the emulsion remains unaltered at this order.
Combining the expressions (5.10)–(5.13), one obtains, to O(φRe), the following
expressions for the first and second normal stress differences in a dilute emulsion
of surfactant-laden drops with highly elastic interfaces in the limit of weak inertia
and a viscosity ratio of unity:

lim
Ma→∞,λ=1

N1 = φCa
5(4E + 1)

2E
− 4

3
φRe, (5.14)

lim
Ma→∞,λ=1

N2 = −φCa
5(13E + 7)

28E
+

2

3
φRe. (5.15)

Since the analysis of Vlahovska et al. (2005) is only valid for E ∼ O(1), one again
expects a change in the sign of both normal stress differences when Re ∼ O(Ca).
The relevant critical Ohnesorge numbers are OhN1(Ma)

c =[(8E)/{15(4E + 1)}]1/2 and
OhN2(Ma)

c = [(56E)/{15(13E + 7)}]1/2, and for O(1) values of E, OhN2(Ma)
c remains

greater than OhN1(Ma)
c . Thus, the sequence of changes in rheological properties with

increasing drop size remains the same as that outlined earlier in the introduction
for the case of a dilute emulsion of surfactant-free drops. Although the case of a
unit viscosity ratio is significantly easier to analyse in that the boundary integral
representation of the disturbance velocity field in this case only involves a single layer
potential (Pozrikidis 1992), one only expects a quantitative alteration in the rheology
for other viscosity ratios. Furthermore, although the variation in the rheological
characteristics of a dilute emulsion with Ma is non-monotonic and the analysis of
Vlahovska et al. (2005) is only valid in the limit Ma → ∞, one again expects the
underlying physics and the general effect of inertia to remain qualitatively unaltered
for O(1) values of Ma. In summary, even for a dilute emulsion of surfactant-laden
drops where the interfaces possess significant elasticity and, in addition, there are
significant variations in the interfacial concentration, one expects a similar qualitative
change in the rheology with inertial effects becoming increasingly important.

Moving on to the case of a steady extensional flow (Ω = 0), one finds that the
O(φRe) correction is identically zero for any λ. Thus, the bulk stress in a dilute
emulsion subject to a steady extensional flow is given by

Σij = −ptδij + μ

{
2Eij + 2φ

(5λ + 2)

2(λ + 1)
Eij + φCa

[
3(19λ + 16)(25λ2 + 41λ + 4)

140(λ + 1)3

×
{

EikEkj − 1

3
δij (EklEkl)

}]
+ O(φ2, φCa2, φRe3/2)

}
, (5.16)
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where the first effects of inertia now enter only at O(φRe3/2). The Trouton ratio,
defined as the ratio of the uniaxial extensional viscosity to the zero-shear viscosity,
continues to be given by its inertialess approximation. The absence of any net effect,
at O(φRe), on the Trouton ratio is because the negative contribution due to the
direct inertial stresses is cancelled by the positive O(Re) correction to the stresslet
integral. The sign of the latter contribution is consistent with the earlier results
of Ramaswamy & Leal (1997), who found that weak inertial effects (Re � O(1))
contribute to an increase in the drop deformation in uniaxial extension at fixed
Ca. This is because the deformation at the smaller values of Re is controlled by
viscous stresses rather than the dynamic pressure contributions at the stagnation
points; the latter retard drop elongation eventually leading to barrel-shaped drops
at the highest Reynolds numbers and lowest viscosity ratios. Thus, rather counter-
intuitively, although the drop deformation at O(φRe) is expected to yield a more
elongated shape, and thereby an increased tensile component of the surface tension
forces along the extensional axis, the total inertial contribution to the Trouton
ratio at this order is zero. Now, an inertial suspension must exhibit an extensional
thickening rheology, this being an immediate consequence of Helmholtz’s minimum
dissipation theorem (see Batchelor 1967; Kim & Karrila 1991). Owing to the absence
of vorticity, a rigid particle in an ambient extensional flow will not rotate at any Re,
and the disturbance velocity field must therefore satisfy the same boundary condition
independent of Re, a requirement for the applicability of the aforementioned theorem.
This has already been pointed out by Ryskin (1980), who determined the Trouton
viscosity of a rigid particle suspension for a range of Re. Since the first effects of
inertia in extensional flow enter at O(φRe3/2), the above conclusion must, in fact, also
hold for a dilute emulsion; in particular, the O(φRe3/2) contribution to the Trouton
ratio is likely to have an extensional-thickening character for any viscosity ratio. The
generalization becomes possible on account of the similar behaviour of drops and
particles at O(Re3/2)—both act as point-force dipoles on length scales that contribute
dominantly to the bulk stress (Subramanian & Koch 2010). Ryskin (1980), in fact, also
calculated the extensional viscosities for drops (both inviscid and those having the
same viscosity as the continuous phase) and found the behaviour to be qualitatively
the same as that for rigid particles, viz. a monotonic increase with Re. The range of
small but finite Re was, however, not resolved well enough in the calculations for
one to extract a scaling behaviour. The shear thickening of an inertial suspension
predicted in a vortical flow such as simple shear (Lin et al. 1970) is not an obvious
consequence. Unlike an extensional flow, the particle angular velocity and therefore
the velocity boundary conditions are a function of Re in this case.

Finally, we compare our theoretical predictions for simple shear flow with the
recent simulation results of Li & Sarkar (2005), who first emphasized the important
role of inertia in emulsion rheology and were able to relate the effects of inertia on
drop deformation to corresponding changes in the bulk stress. The authors studied
the effect of inertia on the deformation of a single drop and the resulting steady
shear rheology of a dilute emulsion of such drops. The dilute emulsion was obtained
by simulating a single drop in simple shear flow generated by two infinite parallel
plates separated vertically and moving in opposite directions, with periodic boundary
conditions in the two horizontal (flow and vorticity) directions. The Navier–Stokes
equations were solved using a front-tracking finite-difference method with the singular
interfacial tension forces being distributed over a thin layer surrounding the drop.
The viscosity ratio was taken as unity in the plots for the rheological properties. As
seen from the expression (3.5) for the bulk stress, one only has contributions from the
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Figure 3. The variation of the first and the second normal stress differences, from both
theory (equations (5.3) and (5.4)) and simulation, as a function of Re for Ca =0.02, λ= 1. The
bold dotted and dash-dotted lines denote the theoretical predictions, while the symbols denote
the simulation results.

interfacial and inertial stresses for this viscosity ratio. The simulations were carried
out for a range of Reynolds numbers from 0.1 to 3 and for capillary number ranging
from 0.02 to about 0.1. As already seen in earlier sections, the theory predicts the
shear viscosity to remain unchanged to O(φRe); thus, a dilute emulsion, to O(φRe),
will exhibit a shear-thinning behaviour for the same reason as that for an inertialess
emulsion, this being related to the increasing alignment of the deformed drop with
the flow direction in the absence of inertia; in the limit of small Ca, the first effects
of shear thinning appear at O(φCa2) (see Barthes Biesel & Acrivos 1973) and have
not been included in the analysis here. In simulations, we not only observe shear
thinning at smaller values of Re, but also observe shear thickening at larger values
of Re of order unity. Since a dilute emulsion always shear thins in the absence
of inertia, the observed shear thickening is likely a result of inertia. As indicated
above, for small Re, an inertial contribution of this nature arises at O(φRe3/2)
and is analysed in detail in a forthcoming publication (Subramanian & Koch 2010).
Herein, we restrict the comparison with the O(φRe)-accurate theory to normal stress
differences.

In figures 3 and 4, we plot N1 and N2 as a function of Re for Ca = 0.02 and
Ca = 0.05, respectively. The qualitative agreement between the theoretical predictions
and the simulation results is readily seen. In both cases, the normal stress differences
change sign with increasing Re, and simulations predict ReN1

c to be greater than ReN2
c ,

in agreement with theory. Furthermore, the observed drop deformation on account of
inertial stresses is again consistent with theoretical predictions, viz. the tilting towards
the velocity gradient axis. However, the comparison also reveals a quantitative
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Figure 4. The variation of the first and the second normal stress differences, from both
theory (equations (5.3) and (5.4)) and simulation, as a function of Re for Ca = 0.05, λ= 1. The
bold dotted and dash-dotted lines denote the theoretical predictions, while the symbols denote
the simulation results.

discrepancy that persists down until the smallest Reynolds numbers (Re ≈ 0.1).
Specifically, the critical Reynolds numbers predicted by theory for both N1 and
N2 are always smaller than those found in the simulations. Since the theoretical
and simulation curves are nearly parallel to one another and the difference is in the
intercepts on the Re axis, the initial suggestion is that of a discrepancy independent
of Re. The likely candidate, for small Ca, is thus the O(φCa2) correction referred to
above. Based on the qualitative discussion therein, one expects the O(φCa2) correction
to further increase N1 and decrease N2; these changes are indeed in the right direction
for the theory to approach the numerics. The analysis for a neutrally buoyant drop
to this order was originally carried out by Barthes Biesel & Acrivos (1973) and,
more recently, by Greco (2002); neither analysis, however, proceeds to calculate the
rheological properties from the expressions for the O(Ca2) velocity and pressure
fields. An O(Ca2) rheological calculation is clearly beyond the scope of the present
analysis. Nevertheless, it is worth noting that the capillary numbers involved in figures
3 and 4 are very small, and the required shift in the theory curves, for agreement
with simulation, corresponds to a numerical pre-factor, at O(Ca2), of about a 100
for a viscosity ratio of unity—a rather unlikely scenario. A closer examination,
however, reveals a slight divergence between the numerical and theoretical curves
with increasing Re. Now, it may be shown that the contributions to N1 and N2 at
O(φRe3/2) have the same sign as those at O(φCa2) (Subramanian & Koch 2010).
Furthermore, for the range of Re and Ca examined in the simulations, the O(Re3/2)
correction is expected to be significantly larger than that at O(Ca2). Thus, it is
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likely that the above discrepancy may, at least in part, be because of the neglect of
higher-order inertial corrections in the current analysis.

6. Conclusions
In this paper, we have derived the stress in a dilute emulsion of neutrally buoyant

drops with small but non-zero Reynolds number Re = γ̇ a2ρ/μ and capillary number
Ca = μaγ̇ /T , when the drop radius a is small compared with the length scale L of
the imposed flow field. In § 2 and 3, we derived expressions for the fluid velocity and
pressure fields, and the disperse phase stress, to O(Re), when the drops are suspended
in an ambient linear flow without vortex stretching; the absence of vortex stretching
may either be on account of the vorticity vector being orthogonal to the rate of strain
tensor as in a planar linear flow or because the vorticity is identically zero as is the
case in an extensional flow. The stress for a general three-dimensional linear flow
was derived in § 4 using the reciprocal theorem. Unlike a rigid particle, this analysis
required two applications of the reciprocal theorem—one to determine the required
moment of the surface force density and the other to determine the moment of the
tangential velocity on the drop surface that also contributes to the drop stresslet. The
inclusion of contributions corresponding to a weak nonlinearity in the ambient flow
field and temporal variations of the ambient strain rate, both of which contribute
to the stress at O(Re), then led to the expression (4.36) for the disperse phase stress
tensor which constitutes the primary result of the paper.

The application of this rheological result would require knowledge of the
drop volume fraction and its possible dependence on position. It is well known
that deformable and/or finite Reynolds number drops can migrate because of
nonlinearities in the imposed flow field or the presence of walls (Taylor 1932; Ho &
Leal 1974; Vasseur & Cox 1976; Schonberg & Hinch 1989). When Ca, Re and
a/L are all small, as assumed in the present study, the migration velocity is small
compared with the mean velocity of the suspension. This suggests that spatial
variations in the volume fraction may be small in Lagrangian unsteady flows as
long as a mechanism is available to produce an initial uniform drop distribution at
the inlet to the flow cell. The most pronounced variations in drop volume fraction
may be expected in unidirectional flows or nearly unidirectional flows where drops
experience the same flow conditions over a sufficient time to migrate an appreciable
distance.

One useful approach to extend our knowledge of the rheology of finite Reynolds
number drops would be to simulate the planar Couette flow of an emulsion. For
example, the front-tracking finite-difference method of Esmaeeli & Tryggvason (1998)
could be used to simulate a suspension of slightly deformable, neutrally buoyant
drops bounded by two planar walls over a range of Reynolds numbers and volume
fractions. The shear stress and first normal stress difference could be determined
directly from the force on the walls, while more detailed insights into the various
contributions to the stress could be obtained using (3.2). Such a study could determine
the range of conditions over which the present predictions are accurate as well as
revealing the changes in rheology that arise at finite Reynolds number and volume
fraction. The planar Couette geometry would lead to a Lagrangian steady mean
suspension velocity, allowing an extended period for (transverse) drop migration to
occur. Nonetheless, one could expect the wall-induced migration of drops to be
balanced by hydrodynamic diffusion. At steady state where no net flux occurs, such
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a balance may be written as

V (y)φ − D(φ, y)
dφ

dy
= 0, (6.1)

where V (y) is the migration velocity, D(φ, y) the shear-induced gradient diffusivity
and y is the coordinate normal to the wall. In the case of a dilute suspension of
rigid particles, Vasseur & Cox (1976) have determined V as a function of y. Recent
numerical simulations indicate a reasonably small variation of volume fraction across
the Couette cell (Wang et al. 2009), thereby allowing for an interpretation in terms of
a local rheological response based on a homogeneously distributed disperse phase.

In summary, our rheological equation for the disperse phase stress in a dilute
emulsion (4.36) is applicable in the limits a/L � 1, Re � 1, Ca � 1 and φ � 1. In
simple shear flow it yields first and second normal stress differences which change sign
depending on the value of the Ohnesorge number Oh =(Ca/Re)1/2. This constitutive
equation should be applied in conjunction with a mass balance determining the spatial
dependence of the drop volume fraction. However, there may be many situations in
which the variations in the volume fraction are modest.

Appendix A. Velocity field constants
The constants ci appearing in the expressions (2.19) and (2.20) for the exterior

velocity and pressure fields are given below:

c1 =
5005λ3 + 7722λ2 + 2288λ + 112

1144(λ + 1)2
,

c2 =
5λ2 + 2λ

λ + 1
,

c3 =
19305λ3 + 29172λ2 + 11440λ + 1032

10296(λ + 1)2
,

c4 =
(5λ + 2)2

4(λ + 1)
,

c5 =
5λ + 2

2
,

c6 =
42042λ4 + 177177λ3 + 204204λ2 + 76996λ + 6304

41184(2λ + 5)(λ + 1)2
,

c7 =
λ

2
,

c8 =
35178λ4 + 132561λ3 + 133276λ2 + 41532λ + 4016

41184(2λ + 5)(λ + 1)2
,

c9 =
426426λ4 + 1728441λ3 + 1942512λ2 + 735778λ + 90412

144144(2λ + 5)(λ + 1)2
,

c10 =
3λ2 + 3λ + 1

9(λ + 1)
,

c11 =
234234λ4 + 959673λ3 + 1077648λ2 + 383426λ + 26348

144144(2λ + 5)(λ + 1)2
,
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c12 =
282282λ4 + 1134705λ3 + 1268124λ2 + 480828λ + 63504

288288(2λ + 5)(λ + 1)2
,

c13 =
138138λ4 + 582153λ3 + 675532λ2 + 248596λ + 15456

288288(2λ + 5)(λ + 1)2
,

c14 =
λ2

4(λ + 1)
,

c15 =
3λ2 + 3λ + 4

18(λ + 1)
,

c17 =
1075074λ4 + 4448301λ3 + 5107388λ2 + 1947684λ + 205408

1441440(2λ + 5)(λ + 1)2
,

c18 =
1027026λ4 + 4135989λ3 + 4610892λ2 + 1699436λ + 189392

1441440(2λ + 5)(λ + 1)2
.

The constants c′
i appearing in the expressions (2.21) and (2.22) for the interior velocity

and pressure fields are given below:

c′
1 =

7

286
,

c′
2 =

2145λ3 + 3718λ2 + 528λ − 504

20592(λ + 1)
,

c′
3 =

15015λ3 + 30602λ2 + 12848λ + 1048

82368(λ + 1)
,

c′
4 =

48906λ4 + 191477λ3 + 242606λ2 + 108500λ + 16580

82368(2λ + 5)(λ + 1)
,

c′
5 =

15015λ3 + 21450λ2 − 5456λ − 8104

82368(λ + 1)
,

c′
6 =

6006λ4 + 9867λ3 + 41106λ2 + 74540λ + 29180

82368(2λ + 5)(λ + 1)
,

c′
7 =

2145λ3 + 3718λ2 + 8536λ + 7504

192192(λ + 1)
,

c′
8 =

282282λ4 + 1063205λ3 + 1097174λ2 + 361896λ + 53760

576576(2λ + 5)(λ + 1)
,

c′
9 = −34034λ4 + 115401λ3 + 104078λ2 + 7496λ − 17920

192192(2λ + 5)(λ + 1)
,

c′
10 =

2145λ3 + 4862λ2 − 3190λ − 5366

82368(λ + 1)
,

c′
11 =

534534λ4 + 1987843λ3 + 1893814λ2 + 524990λ + 76370

576576(2λ + 5)(λ + 1)
,

c′
12 =

516λ2 + 156λ − 7

2016
,

c′
13 =

2145λ3 + 2574λ2 − 7766λ − 7654

82368(λ + 1)
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(A 1)
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c′
14 = −234234λ4 + 830973λ3 + 636714λ2 − 204670λ − 236530

576576(2λ + 5)(λ + 1)
,

c′
15 = −156λ2 + 12λ − 49

2016
,

c′
16 =

1

11
,

c′
17 =

10725λ3 + 18590λ2 − 5784λ − 10944

7488(λ + 1)
,

c′
18 =

10725λ3 + 31694λ2 + 28848λ + 10584

52416(λ + 1)
,

c′
19 =

276λ2 + 100λ − 19

144
,

c′
20 =

10725λ3 + 5486λ2 − 23568λ − 15624

52416(λ + 1)
,

c′
21 =

8λ2 − 3

8
,

c′
22 = −60λ2 − 44λ − 37

144
,

c′
23 =

2145λ3 + 3718λ2 − 9300λ − 10332

52416(λ + 1)
,

c′
24 =

20λ2 + 8λ + 7

48
,

c′
25 =

2145λ3 + 3718λ2 − 1474λ − 2506

82368(λ + 1)
,

c′
26 =

2145λ3 + 3718λ2 − 9482λ − 10514

82368(λ + 1)
,

c′
27 =

558558λ4 + 1755039λ3 + 203814λ2 − 1411082λ − 458990

2882880(2λ + 5)(λ + 1)
,

c′
28 =

942942λ4 + 4029311λ3 + 6081686λ2 + 5059382λ + 2023490

2882880(2λ + 5)(λ + 1)
,

c′
29 =

1680λ3 + 1452λ2 + 1180λ + 273

10080
,

c′
30 = −1680λ3 + 3252λ2 + 1900λ + 483

10080
.
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(A 1, cont.)

Appendix B. Expression for the surface force density: σ · n |r=1

The expression for the surface force density evaluated using the exterior velocity
and pressure fields is given by

σ · n |r=1=

(
−13a1

2
− 15a2

2

16
+

5a3

2
+

5a2
3

8
− 12A − 7C − 7E − 7A′

)
(Γ : nn)2n

+

(
19a1

16
+

a2
2

6
+

3a3

4
− a2

6
− 3C +

8A

3
+ 2E + A′

)
(Γ : nn)(Γ · n)

⎫⎪⎪⎬
⎪⎪⎭ (B 1)
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+

(
19a1

16
+

a2
2

6
− 3a3

4
− a2

12
+ 2C +

8A

3
− 3E + A′

)
(Γ : nn)(Γ † · n)

+

(
15a1

16
+

5a2
2

16
+

3a3

2
+

a2
3

8
− 8G +

4A

3
+ E − 4C ′ +

6A′

7
− 3O

)
(Γ · n) · (Γ · n)n

+

(
15a1

16
+

5a2
2

16
− a2

12
+

a2
3

8
− 8K +

4A

3
+ C − 4E′ +

6A′

7
− 3M

)
(Γ † · n) · (Γ † · n)n

+

(
15a1

8
+

5a2
2

8
+

3a3

2
− a2

12
+

a2
3

4
− 8I +

8A

3
+ C + E − 4G′ +

12A′

7
− 3Q − 3S

)
×(Γ · n) · (Γ † · n)n

+

(
−5a1

16
− a2

2

12
− a3

2
+

a2

12
+

16G

5
+ C ′ − 8A

21
− O +

3E

5
− A′

7

)(
Γ † · Γ · n

)
+

(
−5a1

16
− a2

2

12
+

16K

5
+ E′ − 8A

21
− M +

3C

5
− A′

7

)
(Γ · Γ † · n),

+

(
−5a1

16
− a2

2

12
− a3

4
+

8I

5
+ S − 2Q − 8A

21
+

4C

5
− E

5
+

G′

2
− A′

7

)
(Γ · Γ · n),

+

(
−5a1

16
− a2

2

12
− a3

4
+

a2

12
+ Q − 2S +

8I

5
− 8A

21
+

4E

5
− C

5
+

G′

2
− A′

7

)
(Γ † · Γ † · n)

+

(
−5a1

24
− a2

2

12
+

8I

5
− 4A

21
− 4U − 4A′

35
+

2G′

3

)
(Γ : Γ)n

+

(
−5a1

24
− a2

2

12
+

8(G + K)

5
− 4A

21
− 4W − 4A′

35
+

2(C ′ + E′)

3

)
(Γ : Γ †)n.
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(B 1, cont.)

The constants in the above stress equation are tabulated below:

A = −5005λ3 + 7722λ2 + 2288λ + 112

4576(λ + 1)3
,

A′ = −7(19305λ3 + 29172λ2 + 11440λ + 1032)

20592(λ + 1)3
,

C =
42042λ4 + 177177λ3 + 204204λ2 + 76996λ + 6304

41184(λ + 1)3(2λ + 5)
,

C ′ = −3λ2 + 3λ + 4

18(λ + 1)2
,

E =
35178λ4 + 132561λ3 + 133276λ2 + 41532λ + 4016

41184(λ + 1)3(2λ + 5)
,

E′ =
2(3λ2 + 3λ + 1)

(λ + 1)2
,

G =
582582λ4+ 2372799λ3 + 2703844λ2 + 1056708λ + 144704

(λ + 1)3(2λ + 5)
,

G′ =
1

2λ(λ + 1)
,

I =
195195λ3 + 314028λ2 + 134420λ + 16128

144144(λ + 1)3
,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(B 2)
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I ′ = − 5λ + 2

12(λ + 1)
,

K =
198198λ4 + 835263λ3 + 974116λ2 + 352004λ + 16576

288288(λ + 1)3(2λ + 5)
,

K ′ = − 5λ + 2

12(λ + 1)
,

M =
λ

12(λ + 1)
,

O = − λ

12(λ + 1)
,

Q =
1

30
,

S = − 1

30
,

U =
λ

12(λ + 1)
,

W =
λ

12(λ + 1)
,

a1 =
5λ2 + 2λ

(λ + 1)2
,

a2 =
5λ + 2

(λ + 1)
,

a3 =
λ

λ + 1
.
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(B 2, cont.)

Appendix C. Solution for the flow driven by a stress jump across a spherical
interface

Here, we solve for the flow driven in both the exterior and interior of a spherical
drop across whose interface there is a specified jump in the tangential stress. Physically,
such a jump in shear stress may be attributed to a particular (instantaneous)
distribution of surfactant at the interface. Assuming all relevant length scales to
be small enough for inertial forces to be negligible, we have the following governing
equations:

∇2ũ+ − ∇p̃+ = 0, (C 1)

∇ · ũ+ = 0, (C 2)

in the exterior fluid, and

∇2ũ− − ∇p̃− = 0, (C 3)

∇ · ũ− = 0, (C 4)

in the interior fluid, with the following boundary conditions:

ũ+ = ũ−, (C 5)

ũ+ · n = 0, (C 6)

(σ+ · n) · (I − nn) − λ(σ − · n) · (I − nn) = (B̂ · n) · (I − nn), (C 7)



Inertial effects on the rheology of a dilute emulsion 295

at the interface r = 1, with the usual far-field decay conditions for (ũ+, σ̃+) and the
condition of regularity at the origin for (ũ−, σ̃ −). Using standard procedure involving
an appropriate choice of spherical harmonic solutions (e.g. see Leal 1992), one finds

ũ+ =
1

(λ + 1)

[(
− 3

10r5
+

1

2r7

)
r(B̂ : r r) − 1

5r5
B̂ · r

]
, (C 8)

ũ− =
1

(λ + 1)

[(
3

10
− r2

2

)
B̂ · r +

1

5
r(B̂ : r r)

]
, (C 9)

p̃+ = − 3

5(λ + 1)

B̂ : r r
r5

, (C 10)

p̃− = − 21λ

10(λ + 1)
B̂ : r r, (C 11)

for the velocity and pressure fields, and the corresponding jump in normal stress at
r = 1 is therefore found to be

(σ̃+ − λσ̃ −) : nn = − (9λ + 6)

10(λ + 1)
B̂ : nn. (C 12)
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